首页> 外文期刊>Concurrency and computation: practice and experience >Application of deep learning fusion algorithm in natural language processing in emotional semantic analysis
【24h】

Application of deep learning fusion algorithm in natural language processing in emotional semantic analysis

机译:深度学习融合算法在情感语义分析中自然语言处理中的应用

获取原文
获取原文并翻译 | 示例

摘要

With the development of network technology, people are facing more andmore massive information.How to extract emotional information inmassive information rapidly has received more andmore attention from people. This paper introduces the principle and structure of the traditionalemotional model. Different personality, emotional states, and external stimuli will have differenteffects on emotional semantic analysis. In addition, this paper has proposed emotional semanticanalysis method based on wake-sleep and SVM method. The model starts from the descriptionand calculation of the dynamic characteristics of emotions and more fully predicts the processcharacteristics that describe the evolution of emotions. Search and category browsing allowsusers to quickly access these information points. In addition, this paper provides a deep learningfusion algorithm in emotional semantic analysis, introduces its reference implementation andrelated key technologies, and supports business intelligence to a certain extent, and it has a strongapplication prospect on the network data information.
机译:随着网络技术的发展,人们正面临着越来越多的海量信息。 r n如何快速提取情感信息,海量信息已受到人们越来越多的关注。本文介绍了传统 r 情感模型的原理和结构。不同的人格,情绪状态和外部刺激对情绪语义分析的影响不同。此外,本文还提出了基于唤醒睡眠和支持向量机的情感语义分析方法。该模型从对情绪动态特征的描述 n n开始计算,并更全面地预测描述情绪演变的过程 r n特征。搜索和类别浏览允许 r n用户快速访问这些信息点。另外,本文在情感语义分析中提供了一种深度学习融合算法,介绍了其参考实现和相关关键技术,并在一定程度上支持商业智能,具有很强的应用前景。网络上的数据信息。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号