首页> 外文期刊>Concurrency and computation: practice and experience >Power system dynamic state estimation considering correlation ofmeasurement error from PMU and SCADA
【24h】

Power system dynamic state estimation considering correlation ofmeasurement error from PMU and SCADA

机译:考虑PMU和SCADA测量误差相关性的电力系统动态状态估计

获取原文
获取原文并翻译 | 示例

摘要

It is well known that measurements from phasor measurement unit (PMU) or supervisory controland data acquisition (SCADA) are not generally independent. Since the correlation of measurementerror is a very representative feature of the actual measurement system, traditionalassumptions on error independency are not adequate. In this paper, taking the correlation of measurementerror of both PMU and SCADA measurements into consideration, a novel correlatedextended Kalman filter (CEKF) is proposed. The actual measurement configurations are analyzedwith the consideration of measurement error transfer characteristics. Then, the modified measurementerror covariance matrix is calculated by using the point estimation method, which willreplace the traditional diagonal variance matrix. At last, IEEE 14-bus system and 57-bus systemare provided to illustrate the effectiveness and superiority of the method, respectively.
机译:众所周知,来自相量测量单元(PMU)或监督控制和数据采集(SCADA)的测量通常不是独立的。由于测量 r n错误的相关性是实际测量系统的非常典型的特征,因此传统的 r n错误独立性的假设是不够的。本文考虑了PMU和SCADA测量的测量误差 r n的相关性,提出了一种新型的相关 r 扩展卡尔曼滤波器(CEKF)。在考虑测量误差传递特性的情况下分析实际测量配置。然后,使用点估计方法计算修改后的测量 r n误差协方差矩阵,它将替换传统的对角方差矩阵。最后通过IEEE 14总线系统和57总线系统分别说明了该方法的有效性和优越性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号