首页> 外文期刊>Concurrency and computation: practice and experience >Multi-objective approach of energy efficient workflow scheduling in cloud environments
【24h】

Multi-objective approach of energy efficient workflow scheduling in cloud environments

机译:云环境中节能工作流调度的多目标方法

获取原文
获取原文并翻译 | 示例

摘要

Scheduling the tasks of aworkflow to the cloud resources is awell-knownN-P hard problem. Thestakeholders involved in a cloud environment have different interests in scheduling problem. Inaddition to the traditional objectives likemakespan, budget, and deadline, optimized in workflowscheduling, considering the green aspect of cloud, (ie, energy consumption) increase the problemcomplexity. Moreover, the interests of a cloud's stakeholders are conflicting, and satisfying allthese interests simultaneously is a big problem. In this paper, we proposed a new Multi-ObjectiveGenetic Algorithm(MOGA) for workflow scheduling in a cloud environment. MOGA consideredthe conflicting interest of the cloud stakeholders for optimization and provided a solution, whichnot onlyminimizes themakespan under the budget and deadline constraints but also provided anenergy efficient solution using the dynamic voltage frequency scaling.We provided a gap searchalgorithm in this paper, which is used to optimize the resource utilization of the cloud's resources.We compared our results with genetic algorithms considering the budget, deadline, and energyefficiency individually.We also compared the performance of MOGA with Multi-objective ParticleSwarm Optimization (MOPSO)with the same objectives as those ofMOGA. To the best of ourknowledge, there is no solution presented in the literature that considers the diverse objectivesconsidered in this work. The results show that our proposed algorithm MOGA has significantlyimproved not only in terms of budget, deadline, and energy but also improved the utilization ofcloud's resources as compared to the competitive algorithms of this work.
机译:将工作流的任务调度到云资源是一个众所周知的N-P难题。参与云环境的利益相关者对调度问题有不同的兴趣。除了传统的目标(如工期,预算和截止日期)以外,在工作流程中进行了优化 n n n n n n n n n n n n n n n n n n n n n n n n n n n绿色的方面(例如,能源消耗),增加了 n n的复杂性。而且,云利益相关者的利益是矛盾的,同时满足所有这些利益是一个大问题。本文针对云环境下的工作流调度提出了一种新的多目标遗传算法(MOGA)。 MOGA考虑了云利益相关者对于优化的利益冲突,并提供了一个解决方案,它不仅可以在预算和截止期限约束下最小化制造周期,还可以使用动态电压频率缩放提供一种节能的解决方案。我们在本文中提供了一个缺口搜索 r 算法,用于优化云资源的资源利用率。 r n我们将结果与遗传算法进行了比较,并分别考虑了预算,期限和能源效率。还比较了具有与MOGA相同目标的多目标粒子 r nSwarm优化(MOPSO)的MOGA的性能。就我们所知,文献中没有提出考虑这项工作中各种目标的解决方案。结果表明,与这项竞争性算法相比,我们提出的算法MOGA不仅在预算,截止日期和能源方面都得到了显着改善,而且还提高了Cloudcloud资源的利用率。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号