首页> 外文期刊>Concurrency and computation: practice and experience >Optimally bipartitioning sparsematrices with reordering and parallelization
【24h】

Optimally bipartitioning sparsematrices with reordering and parallelization

机译:具有重新排序和并行化功能的最优分割分区

获取原文
获取原文并翻译 | 示例

摘要

A good task-to-processor assignment is crucial for parallel efficiency since the communicationbetween the tasks is usually themain bottleneck for scalability. A fundamental approach to solvethis problem is modeling the tasks as a hypergraph where the pins correspond to the tasks andthe nets represent the communication among them. The vertices in this hypergraph is partitionedinto a number of parts, which correspond to processors, in a way that the total number of verticesfor each part is balanced and the amount of edges having endpoints in different parts isminimized. Sparse matrix-vectormultiplication is an extensively used kernel inmany applications.Recently, a novel, purely combinatorial branch-and-bound–based approach has been proposedfor sparse-matrix bipartitioning which can handle hypergraphs that cannot be optimally partitionedby using existing methods due to the problem's complexity.Our work extends the previousstudywith three ideas.We use 1) matrix ordering techniques to usemore information in the earlierbranchesofthetree, 2) amachine learning approach to choose anorderingbasedonthematrixfeatures,and3) a parallelization technique tosearch anoptimal bipartitioning.Asour experimentsshow, these techniques make the bipartitioning process significantly faster.
机译:任务到处理器的良好分配对于并行效率至关重要,因为任务之间的通信通常是可伸缩性的主要瓶颈。解决此问题的基本方法是将任务建模为超图,其中引脚对应于任务,网络代表它们之间的通信。此超图中的顶点被划分为与处理器相对应的多个部分,以使每个部分的顶点总数平衡并且在不同部分具有端点的边的数量为 r n最小化。稀疏矩阵向量乘法是许多应用程序中广泛使用的内核。 r n最近,已经提出了一种新颖的,基于组合分支定界的新颖方法 r n用于稀疏矩阵双向划分,该方法可以处理无法最优分区的超图 r n由于问题的复杂性而使用现有方法。我们的工作扩展了以前的 r nstudy的三个想法。我们使用1)矩阵排序技术在 r ntree的较早分支中使用更多信息,2)使用机器学习方法进行选择3)一种并行化技术来搜索最佳分割。如实验所示,这些技术使分割过程明显加快。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号