首页> 外文期刊>Concurrency and computation: practice and experience >Virtual machine anomaly detection strategy based on cloud platform operating environment perception
【24h】

Virtual machine anomaly detection strategy based on cloud platform operating environment perception

机译:基于云平台运行环境感知的虚拟机异常检测策略

获取原文
获取原文并翻译 | 示例

摘要

In this paper, a variety of anomaly detection strategies are provided with the application ofthe cloud platform center in view of the processor resources allocation according to the peakload demand, provision of the single anomaly detection strategy, and the problem of the suddenincrease of the abnormal rate due to the change of the resource demand. The gray waveformdetection algorithm is applied to detect the anomaly arriving at the virtual machine in the futuretime period, and the abnormal utility function of the virtual machine is given to balance theresource requirements and anomaly detection priority, and all the virtual machines are dynamicallyconfigured for each virtual machine with the maximization of the anomaly utility value ofthe virtual machine as the objective. Through the global load balancing between the same virtualmachines and the redistribution of the virtual machines for multiple times, the detection quantityon the virtual machine anomalywith relatively huge increase of anomaly is further increased.Finally, the anomaly detection algorithm based on the gray waveform detection in the cloud platformcenter ADGWT is given. Simulation experiment results show that the proposed algorithmcan effectively improve the abnormal rate of the processors in the cloud platform, and it haspractical significance to improve the completion rate of the user requests.
机译:本文针对云平台中心的应用提供了多种异常检测策略,根据峰值负载需求,单个异常检测策略的提供以及处理器的资源分配,针对云平台中心的应用提供了多种异常检测策略。资源需求变化导致异常率突然增加的问题。应用灰色波形 r n检测算法来检测未来 r n时间段到达虚拟机的异常,并给出虚拟机的异常效用函数以平衡资源需求和异常检测优先级,并且为每个虚拟机动态配置所有虚拟机,并以虚拟机的异常实用价值最大化为目标。通过相同虚拟机之间的全局负载平衡和虚拟机的多次重新分布,异常数量相对较大的虚拟机异常的检测量进一步增加。 r n最后,给出了基于云平台 r ncenter ADGWT中灰度波形检测的异常检测算法。仿真实验结果表明,该算法可以有效提高云平台中处理器的异常率,对提高用户请求的完成率具有实际意义。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号