首页> 外文期刊>Concurrency and computation: practice and experience >Research on traffic sign detection algorithm based on deep learning
【24h】

Research on traffic sign detection algorithm based on deep learning

机译:基于深度学习的交通标志检测算法研究

获取原文
获取原文并翻译 | 示例

摘要

Due to the respective interests among themain bodies of the supply chain, it is necessary to introducesome mechanisms to coordinate the problem of decrease of detection rate caused by theinterconnection of closed-loop traffic signs. This paper proposes a traffic sign detection algorithmbasedondeep learning. It uses the red, green, andblue (RGB)normalization-based colordetectionalgorithm and regional feature decision criteria to automatically identify themulti-sign interconnectioncandidate regions and perform edge smoothing and contour tracking for the extractedtarget regions. It uses deep learner based on global and local curvature characteristics to maketraffic sign detection on the extracted contours, and, according to judgment criteria of convexityand concavity of corners as well as matching conditions of detection point pairs, extracts thedetection point pairs between the signs from the corners. It seeks the detection lines betweendetection point pairs and realizes the final detection of signs. The experimental results verify theeffectiveness of the proposed algorithm. Compared with the existing sign detection algorithmbased on watershed transformation and the improved adaptive detection algorithm, it overcomesthe sign over-detection problem and improves the overall performances of the sign detection.
机译:由于供应链主体之间的各自利益,有必要引入一些机制来协调由闭环交通标志的相互连接引起的检测率降低的问题。提出了一种基于深度学习的交通标志检测算法。它使用基于红色,绿色和蓝色(RGB)归一化的颜色检测 r 算法和区域特征决策标准来自动识别多符号互连 r n候选区域,并对提取的 r n目标进行边缘平滑和轮廓跟踪地区。它使用基于全局和局部曲率特征的深度学习器对提取的轮廓进行交通标志检测,并根据拐角的凸度和凹度的判断标准以及检测点对的匹配条件来提取拐角处的标志之间的检测点对。它在 r n个检测点对之间寻找检测线,并实现对符号的最终检测。实验结果证明了该算法的有效性。与现有的基于分水岭变换的符号检测算法和改进的自适应检测算法相比,它克服了符号过度检测的问题,提高了符号检测的整体性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号