首页> 外文期刊>Concurrency and computation: practice and experience >Opto-electric target tracking algorithm based on local feature selection and particle filter optimization
【24h】

Opto-electric target tracking algorithm based on local feature selection and particle filter optimization

机译:基于局部特征选择和粒子滤波优化的光电目标跟踪算法

获取原文
获取原文并翻译 | 示例

摘要

Aiming at exploring the opto-electric target tracking, which is an important technology in the fieldof computer vision, the binocular stereo vision camera opto-electric target tracking is studiedand and a multi feature fusion characterization modeling method locally weighted is proposed.The target area is divided into multiple sub-image areas by themodeling method, the feature histogramafter the background weighting is extracted, and the sub-image region is taken as a basicunit for adjusting the feature weight. The sub-image area selected is regarded as the significantarea, and the significant area is further extracted and fused in particle filter tracking algorithm.Then, the obtained significant are is conductedwith color distribution processing. In the state predictionstage, the Mean Shift algorithm is applied to optimize each particle so that it convergesto the optimal position. The experiment results showed that the multi feature fusion representationmodelingmethod has better tracking accuracy and stability compared with the traditionalfusion method and after the color distribution treatment; it has strong anti-jamming for backgroundeffect. It is concluded that usingMeanShift algorithm for particle optimization can furtherstrengthen the accurate tracking of the targets.
机译:为了探索光电目标跟踪技术,它是计算机视觉领域中的一项重要技术,研究了双目立体视觉相机的光电目标跟踪技术,并在本地开发了一种多特征融合特征建模方法。 r n通过建模方法将目标区域划分为多个子图像区域,提取背景加权后的特征直方图 r n,并将子图像区域作为基本 r n单元用于调整特征权重。所选的子图像区域被视为有效区域,然后通过粒子过滤器跟踪算法进一步提取并融合有效区域。 r n然后,通过颜色分布处理对获得的有效区域进行处理。在状态预测阶段,应用均值漂移算法优化每个粒子,使其收敛到最佳位置。实验结果表明,与传统的 r n融合方法相比,经过颜色分布处理后,多特征融合表示模型 r n方法具有更好的跟踪精度和稳定性。它对背景 r 效果具有很强的抗干扰能力。得出的结论是,使用MeanShift算法进行粒子优化可以进一步 r n加强目标的精确跟踪。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号