首页> 外文期刊>CONCURRENCY PRACTICE & EXPERIENCE >A novel sentence similarity model with word embedding based on convolutional neural network
【24h】

A novel sentence similarity model with word embedding based on convolutional neural network

机译:基于卷积神经网络的带词嵌入的句子相似度模型

获取原文
获取原文并翻译 | 示例

摘要

In this paper, we propose an effective model for the similarity metrics of English sentences. Inthe model, we first make use of word embedding and convolutional neural network (CNN) toproduce a sentence vector and then leverage the information of the sentence vector pair to calculatethe score of sentence similarity. Considering the case of long-range semantic dependenciesbetween words, we propose a novel method transforming word embeddings to construct thethree-dimensional sentence feature tensor. In addition,weincorporate the k-max pooling into theconvolutional neural network to adapt to variable lengths of input sentences. The proposed modelrequires no external resource such asWordNet and parse tree. Meanwhile, it consumes very littletime for training. Finally, we carried out extensive simulations to evaluate the performance ofour model compared with other state-of-the-art works. Experimental results on SemEval 2014task (SICK test corpus) indicated that our model can achieve a good performance in the terms ofPearson correlation coefficient, Spearman correlation coefficient, and mean squared errors. Furthermore,experimental resultsonMicrosoft research paraphrase identification (MSRP)indicatedthat our model can achieve an excellent performance in the terms of F1 and Accuracy.
机译:在本文中,我们提出了一种有效的英语句子相似度度量模型。在该模型中,我们首先利用词嵌入和卷积神经网络(CNN)生成句子向量,然后利用句子向量对的信息来计算句子相似度得分。考虑到单词之间存在长距离语义依赖的情况,我们提出了一种转换单词嵌入以构造 r n三维句子特征张量的新方法。另外,我们将k-max合并到卷积神经网络中以适应可变长度的输入语句。提出的模型不需要任何外部资源,例如WordNet和解析树。同时,它只花费很少的时间进行训练。最后,我们进行了广泛的仿真,以评估 r nour模型与其他最新技术的性能。在SemEval 2014 r ntask(SICK测试语料库)上的实验结果表明,我们的模型可以在 r nPearson相关系数,Spearman相关系数和均方误差方面取得良好的性能。此外, r nMicrosoft研究释义识别(MSRP)的实验结果表明 r n我们的模型可以在F1和准确性方面实现出色的性能。

著录项

  • 来源
    《CONCURRENCY PRACTICE & EXPERIENCE》 |2018年第23期|e4415.1-e4415.12|共12页
  • 作者单位

    State Key Laboratory of Networking and Switching Technology, Beijing University of Posts and Telecommunications, Beijing, China;

    State Key Laboratory of Networking and Switching Technology, Beijing University of Posts and Telecommunications, Beijing, China;

    State Key Laboratory of Networking and Switching Technology, Beijing University of Posts and Telecommunications, Beijing, China College of Computer and Communication Engineering, China University of Petroleum, Qingdao, China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    convolutional neural network; sentence similarity,word embedding;

    机译:卷积神经网络句子相似度;词嵌入;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号