首页> 外文期刊>Concurrency, practice and experience >Amodified PSO algorithm for task scheduling optimization in cloud computing
【24h】

Amodified PSO algorithm for task scheduling optimization in cloud computing

机译:改进的PSO算法在云计算中优化任务调度

获取原文
获取原文并翻译 | 示例

摘要

With the increasing scale of tasks in cloud computing, the problem of high energy consumptionbecomes increasingly serious. To deal with the problem, we propose a cloud computing energyconsumption model, which takes into account the execution and transmission cost of the processor.Then, based on this model, we put forward a task scheduling optimization algorithm namedmodified particleswarmoptimization (M-PSO) to handle the local optimumand slow convergenceproblem. Different from the PSO,M-PSO can dynamically adjust the inertia weight coefficient toimprove the speed of convergence according to the number of iterations. Finally, the performanceof the proposed algorithm is evaluated through the CloudSim toolkit, and the experimental resultsshow that the M-PSO can efficiently reduce total cost compared with other algorithms.
机译:随着云计算任务规模的增加,高能耗问题变得越来越严重。为了解决这个问题,我们提出了一种云计算能耗 r n消耗模型,该模型考虑了处理器的执行和传输成本。 r n然后,基于该模型,提出了一种任务调度优化算法,名为 r n修改后的粒子热优化(M-PSO)以处理局部最优和慢收敛问题。与PSO不同,M-PSO可以根据迭代次数动态调整惯性权重系数,以提高收敛速度。最后,通过CloudSim工具包评估了该算法的性能,实验结果表明,与其他算法相比,M-PSO可以有效降低总成本。

著录项

  • 来源
    《Concurrency, practice and experience》 |2018年第24期|e4970.1-e4970.11|共11页
  • 作者单位

    School of Computer Engineering and Applied Mathematics, Changsha University, Changsha 410081, China,Department of Computer Science, Hunan University, Changsha 410082, China;

    Department of Computer Science, Hunan University, Changsha 410082, China;

    School of Software, Central South University, Changsha 410083, China;

    School of Software, Henan University, Kaifeng 475001, China,CERNET Limited Company, Beijing 100084, China,State Key Laboratory of Networking and Switching Technology, Beijing University of Posts and Telecommunications, Beijing 100876, China;

    School of Computer Engineering and Applied Mathematics, Changsha University, Changsha 410081, China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    cloud computing; inertia weight; particle swarm optimization; task scheduling;

    机译:云计算;惯性重量粒子群优化;任务调度;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号