首页> 外文期刊>Concurrency and computation: practice and experience >Image super-resolution reconstruction based on adaptive sparse representation
【24h】

Image super-resolution reconstruction based on adaptive sparse representation

机译:基于自适应稀疏表示的图像超分辨率重建

获取原文
获取原文并翻译 | 示例

摘要

There are two problems in global over-complete dictionary: lack of adaptability to image localstructure and low computational efficiency. Based on the study of the adaptive sparse representationreconstruction, this paper obtained a series of corresponding sub-dictionaries by imageblock subset, then the optimal sub-dictionary for each reconstruction image block is adaptivelyselected, which can be more accurately sparse represented modeled to improve the effect andefficiency of the algorithm. In order to promote the ability of sparse representation model, nonlocalself-similarity prior item is introduced. Meanwhile, the nonlocal self-similarity model isimproved by using the idea of the bilateral filter, and the space distance restraint between pixelsis introduced to better keep the image edge information. Moreover, the nonlocal self-similar distancemeasure is improved to reduce the amount of calculation. Experimental results show thatthe proposed algorithm can effectively suppress noise effects and can maintain the image edgedetails, at thesametime, there are certain advantages atboth the peak signal tonoise ratio (PSNR)and visual effects.
机译:全局超完备字典存在两个问题:对图像局部 r n结构的适应性不足和计算效率低。在研究自适应稀疏表示 r n重建的基础上,通过图像 r nblock子集获得了一系列对应的子字典,然后针对每个重建图像块自适应选择了最优子字典 r n,可以更精确地对稀疏表示建模,以提高算法的效果和效率。为了提高稀疏表示模型的能力,引入了非局部 r n自相似项。同时,利用双边滤波器的思想对非局部自相似模型进行了改进,引入了像素间间距约束以更好地保持图像边缘信息。此外,改进了非局部自相似距离 r n度量以减少计算量。实验结果表明,该算法能有效抑制噪声影响,并能保持图像边缘的细节,同时在峰值信噪比(PSNR)和视觉效果方面均具有一定优势。

著录项

  • 来源
    《Concurrency and computation: practice and experience》 |2018年第24期|e4968.1-e4968.10|共10页
  • 作者单位

    School of Computer Science and Engineering, Nanjing University of Science & Technology, Nanjing 210094, China,School of Computer Engineering, Nanjing Institute of Technology, Nanjing 211167, China;

    College of Computer and Information, Hohai University, Nanjing 211100, China;

    School of Computer Science and Engineering, Nanjing University of Science & Technology, Nanjing 210094, China;

    School of Computer Engineering, Nanjing Institute of Technology, Nanjing 211167, China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    dictionaries; nonlocal self-similarity; sparse representation; super-resolution;

    机译:字典;非局部自相似性稀疏表示超分辨率;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号