首页> 外文期刊>Concurrency and Computation >A throughput maximization strategy for scheduling transaction-intensive workflows on SwinDeW-G
【24h】

A throughput maximization strategy for scheduling transaction-intensive workflows on SwinDeW-G

机译:在SwinDeW-G上安排事务密集型工作流的吞吐量最大化策略

获取原文
获取原文并翻译 | 示例

摘要

With the rapid development of e-business, workflow systems now have to deal with transaction-intensive workflows whose main characteristic is the huge number of concurrent workflow instances. For such workflows, it is important to maximize the overall throughput to provide good quality of service. However, most of the existing scheduling algorithms are designed for scheduling of a single complex scientific workflow instance and are not efficient enough for scheduling transaction-intensive workflows. To address this problem, we propose a throughput maximization strategy (TMS), which contains two specific algorithms for scheduling transaction-intensive workflows at the instance and task levels, respectively. The first algorithm called Opposite Average Load tries to maximize the overall throughput by pursuing the overall load balance at the instance level, whereas the second algorithm called Extended Min-Min tries to further maximize the overall throughput at the task level by increasing the utilization rate of resources within each local autonomous group. The comparison and simulation performed on Swinburne Decentralized Workflow for Grid (SwinDeW-G), a peer-to-peer-based grid workflow environment, demonstrate that our strategy can improve the overall throughput significantly over existing scheduling algorithms when scheduling transaction-intensive workflows.
机译:随着电子商务的飞速发展,工作流系统现在必须处理事务密集型工作流,​​其主要特征是大量并发工作流实例。对于此类工作流程,重要的是最大化整体吞吐量以提供良好的服务质量。但是,大多数现有的调度算法都设计用于调度单个复杂的科学工作流实例,并且效率不足以调度事务密集型工作流。为了解决此问题,我们提出了一种吞吐量最大化策略(TMS),该策略包含两个用于分别在实例和任务级别安排事务密集型工作流的算法。第一种算法称为“相反平均负载”,它试图通过在实例级别上追求总体负载平衡来最大化总体吞吐量,而第二种算法“扩展最小-最小值”则试图通过提高资源利用率来进一步最大化任务级别上的总体吞吐量。每个本地自治组中的资源。在基于对等的网格工作流环境Swinburne网格分散工作流(SwinDeW-G)上进行的比较和仿真表明,当调度事务密集型工作流时,我们的策略可以比现有调度算法显着提高总体吞吐量。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号