首页> 外文期刊>Concurrency, practice and experience >Parallel unmixing of remotely sensed hyperspectral images on commodity graphics processing units
【24h】

Parallel unmixing of remotely sensed hyperspectral images on commodity graphics processing units

机译:在商品图形处理单元上并行分解遥感高光谱图像

获取原文
获取原文并翻译 | 示例

摘要

Hyperspectral imaging instruments are capable of collecting hundreds of images, corresponding to different wavelength channels, for the same area on the surface of the Earth. One of the main problems in the analysis of hyperspectral data cubes is the presence of mixed pixels, which arise when the spatial resolution of the sensor is not enough to separate spectrally distinct materials. Hyperspectral unmixing is one of the most popular techniques to analyze hyperspectral data. It comprises two stages: (i) automatic identification of pure spectral signatures (endmembers) and (ii) estimation of the fractional abundance of each endmember in each pixel. The spectral unmixing process is quite expensive in computational terms, mainly due to the extremely high dimensionality of hyperspectral data cubes. Although this process maps nicely to high performance systems such as clusters of computers, these systems are generally expensive and difficult to adapt to real-time data processing requirements introduced by several applications, such as wildland fire tracking, biological threat detection, monitoring of oil spills, and other types of chemical contamination. In this paper, we develop an implementation of the full hyperspectral unmixing chain on commodity graphics processing units (GPUs). The proposed methodology has been implemented, using the CUDA (compute device unified architecture), and tested on three different GPU architectures: NVidia Tesla C1060, NVidia GeForce GTX 275, and NVidia GeForce 9800 GX2, achieving near real-time unmixing performance in some configurations tested when analyzing two different hyperspectral images, collected over the World Trade Center complex in New York City and the Cuprite mining district in Nevada.
机译:高光谱成像仪器能够为地球表面上的同一区域收集数百个图像,这些图像对应于不同的波长通道。高光谱数据立方体分析中的主要问题之一是存在混合像素,当传感器的空间分辨率不足以分离光谱不同的材料时,就会出现混合像素。高光谱分解是分析高光谱数据的最流行技术之一。它包括两个阶段:(i)自动识别纯光谱特征(末端成员)和(ii)估算每个像素中每个末端成员的分数丰度。频谱分解过程在计算上非常昂贵,这主要是由于高光谱数据立方体的维数很高。尽管此过程可以很好地映射到高性能系统(例如计算机集群),但这些系统通常很昂贵,并且难以适应多种应用(例如野外火灾跟踪,生物威胁检测,漏油监控)引入的实时数据处理要求以及其他类型的化学污染。在本文中,我们开发了在商品图形处理单元(GPU)上完整的高光谱解混链的实现。拟议的方法已使用CUDA(计算设备统一体系结构)实施,并在三种不同的GPU体系结构上进行了测试:NVidia Tesla C1060,NVidia GeForce GTX 275和NVidia GeForce 9800 GX2,在某些配置中实现了近实时的解混性能在分析两个不同的高光谱图像时进行了测试,这些图像是在纽约世界贸易中心综合大楼和内华达州的Cuprite采矿区收集的。

著录项

  • 来源
    《Concurrency, practice and experience》 |2011年第13期|p.1538-1557|共20页
  • 作者单位

    Hyperspectral Computing Laboratory, Department of Technology of Computers and Communications,University of Extremadura, Avda. de la Universidad s, 10071 Cdceres, Spain;

    Hyperspectral Computing Laboratory, Department of Technology of Computers and Communications,University of Extremadura, Avda. de la Universidad s, 10071 Cdceres, Spain;

    Hyperspectral Computing Laboratory, Department of Technology of Computers and Communications,University of Extremadura, Avda. de la Universidad s, 10071 Cdceres, Spain;

    Hyperspectral Computing Laboratory, Department of Technology of Computers and Communications,University of Extremadura, Avda. de la Universidad s, 10071 Cdceres, Spain;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    hyperspectral imaging; endmember extraction; abundance estimation; parallel processing; gpus;

    机译:高光谱成像端基提取;丰度估计并行处理;gpus;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号