首页> 外文期刊>Concurrency, practice and experience >Mining Web search engines for query suggestion
【24h】

Mining Web search engines for query suggestion

机译:挖掘Web搜索引擎以获取查询建议

获取原文
获取原文并翻译 | 示例

摘要

Queries to Web search engines are usually short and ambiguous, which provides insufficient information needs of users for effectively retrieving relevant Web pages. To address this problem, query suggestion is implemented by most search engines. However, existing methods do not leverage the contradiction between accuracy and computation complexity appropriately (e.g. Google's 'Search related to' and Yahoo's 'Also Try'). In this paper, the recommended words are extracted from the search results of the query, which guarantees the real time of query suggestion properly. A scheme for ranking words based on semantic similarity presents a list of words as the query suggestion results, which ensures the accuracy of query suggestion. Moreover, the experimental results show that the proposed method significantly improves the quality of query suggestion over some popular Web search engines (e.g. Google and Yahoo). Finally, an offline experiment that compares the accuracy of snippets in capturing the number of words in a document is performed, which increases the confidence of the method proposed by the paper.
机译:对Web搜索引擎的查询通常简短而模棱两可,这为有效地检索相关Web页面提供了不足的用户信息需求。为了解决这个问题,大多数搜索引擎都实施了查询建议。但是,现有方法无法适当地利用准确性和计算复杂性之间的矛盾(例如Google的“ Search related to”和Yahoo的“ Also Try”)。本文从查询的搜索结果中提取推荐词,以保证查询建议的实时性。一种基于语义相似度的单词排序方案,将单词列表作为查询建议结果,从而保证查询建议的准确性。而且,实验结果表明,与某些流行的Web搜索引擎(例如Google和Yahoo)相比,该方法可显着提高查询建议的质量。最后,进行了离线实验,该实验比较了摘要在捕获文档中单词数量方面的准确性,从而提高了本文提出的方法的可信度。

著录项

  • 来源
    《Concurrency, practice and experience》 |2011年第10期|p.1101-1113|共13页
  • 作者单位

    Digital Content Computing and Cognitive Informatics Group, School of Computer Engineering and Science,Shanghai University, Shanghai 200072, People's Republic of China;

    Digital Content Computing and Cognitive Informatics Group, School of Computer Engineering and Science,Shanghai University, Shanghai 200072, People's Republic of China;

    Digital Content Computing and Cognitive Informatics Group, School of Computer Engineering and Science,Shanghai University, Shanghai 200072, People's Republic of China;

    Digital Content Computing and Cognitive Informatics Group, School of Computer Engineering and Science,Shanghai University, Shanghai 200072, People's Republic of China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    query suggestion; web mining; web search;

    机译:查询建议;网络挖掘;网络搜索;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号