首页> 外文期刊>Concurrency, practice and experience >Fast in-place, comparison-based sorting with CUDA: a study with bitonic sort
【24h】

Fast in-place, comparison-based sorting with CUDA: a study with bitonic sort

机译:使用CUDA进行快速的基于比较的原位排序:双音阶排序研究

获取原文
获取原文并翻译 | 示例

摘要

State-of-the-art graphics processors provide high processing power and furthermore, the high programma-bility of GPUs offered by frameworks like CUDA (Compute Unified Device Architecture) increases their usability as high-performance co-processors for general-purpose computing. Sorting is well investigated in Computer Science in general, but (because of this new field of application for GPUs) there is a demand for high-performance parallel sorting algorithms that fit with the characteristics of the modern GPU-architecture. We present a high-performance in-place implementation of Batcher's bitonic sorting networks for CUDA-enabled GPUs. Therefore, we assigned compare/exchange operations to threads in a way that decreases low-performance global-memory access and makes efficient use of high-performance shared memory. This greatly increases the performance of this in-place, comparison-based sorting algorithm. Our implementation outperforms all other algorithms in our tests when sorting 64-bit keys. It is the fastest comparison-based GPU sorting algorithm for 32-bit keys, being only outperformed by (non-comparison-based) radix sort when sorting sequences larger than 2~(23).
机译:先进的图形处理器提供了强大的处理能力,此外,CUDA(计算机统一设备架构)等框架提供的GPU的高可编程性提高了它们作为通用计算的高性能协处理器的可用性。一般而言,计算机科学对排序进行了很好的研究,但是(由于GPU的这一新应用领域)对高性能并行排序算法的需求与现代GPU架构的特征相符。我们为支持CUDA的GPU提供了Batcher的双齿分类网络的高性能就地实现。因此,我们将比较/交换操作分配给线程,从而减少了对低性能全局内存的访问,并有效利用了高性能共享内存。这极大地提高了这种基于比较的原位排序算法的性能。在对64位密钥进行排序时,我们的实现优于测试中的所有其他算法。它是针对32位键的最快的基于比较的GPU排序算法,仅当排序序列大于2〜(23)时才比(基于非比较)基数排序好。

著录项

  • 来源
    《Concurrency, practice and experience》 |2011年第7期|p.681-693|共13页
  • 作者单位

    Research Group for Communication Systems, Department of Computer Science,Christian-Albrechts-University Kiel, Germany;

    Research Group for Communication Systems, Department of Computer Science,Christian-Albrechts-University Kiel, Germany;

    Research Group for Communication Systems, Department of Computer Science,Christian-Albrechts-University Kiel, Germany;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    GPGPU; CUDA; parallel sorting; bitonic sort;

    机译:GPGPU;CUDA;并行排序双音排序;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号