首页> 外文期刊>Concurrency and computation: practice and experience >Measuring the overhead of Intel C++ Concurrent Collections over Threading Building Blocks for Gauss-Jordan elimination
【24h】

Measuring the overhead of Intel C++ Concurrent Collections over Threading Building Blocks for Gauss-Jordan elimination

机译:测量线程构建基块上英特尔C ++并发集合的开销,以消除高斯-乔丹

获取原文
获取原文并翻译 | 示例

摘要

The most efficient way to parallelize computation is to build and evaluate the task graph constrained only by the data dependencies between the tasks. Both Intel's C++ Concurrent Collections (CnC) and Threading Building Blocks (TBB) libraries allow such task-based parallel programming. CnC also adapts the macro data flow model by providing only single-assignment data objects in its global data space. Although CnC makes parallel programming easier, by specifying data flow dependencies only through single-assignment data objects, its macro data flow model incurs overhead. Intel's C++ CnC library is implemented on top of its C++ TBB library. We can measure the overhead of CnC by comparing its performance with that of TBB. In this paper, we analyze all three types of data dependencies in the tiled in-place Gauss-Jordan elimination algorithm for the first time. We implement the task-based parallel tiled Gauss-Jordan algorithm in TBB using the data dependencies analyzed and compare its performance with that of the CnC implementation. We find that the overhead of CnC over TBB is only 12%-15% of the TBB time, and CnC can deliver as much as 87%-89% of the TBB performance for Gauss-Jordan elimination, using the optimal tile size.
机译:并行计算的最有效方法是构建和评估仅受任务之间数据依赖关系约束的任务图。英特尔的C ++并行集合(CnC)和线程构建块(TBB)库都允许进行基于任务的并行编程。 CnC还通过在其全局数据空间中仅提供单分配数据对象来适应宏数据流模型。尽管CnC使并行编程更容易,但是通过仅通过单分配数据对象指定数据流依赖性,其CnC宏数据流模型会产生开销。英特尔的C ++ CnC库在其C ++ TBB库的顶部实现。我们可以通过比较CnC与TBB的性能来衡量其开销。在本文中,我们首次分析了平铺的就地Gauss-Jordan消除算法中所有三种类型的数据依赖关系。我们使用已分析的数据依赖性在TBB中实现了基于任务的并行平铺高斯-乔丹算法,并将其性能与CnC实现的性能进行了比较。我们发现,CnC在TBB上的开销仅为TBB时间的12%-15%,并且使用最佳的磁贴大小,CnC可以提供高斯-乔丹消除效果的TBB性能的87%-89%。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号