首页> 外文期刊>Concurrency and Computation >Cooperative and reactive scheduling in large-scale virtualized platforms with DVMS
【24h】

Cooperative and reactive scheduling in large-scale virtualized platforms with DVMS

机译:带有DVMS的大规模虚拟化平台中的协作和反应式调度

获取原文
获取原文并翻译 | 示例

摘要

One of the principal goals of cloud computing is the outsourcing of the hosting of data and applications, thus enabling a per-usage model of computation. Data and applications may be packaged in virtual machines (VM), which are themselves hosted by nodes, that is, physical machines. Several frameworks have been designed to manage VMs on pools of physical machines; most of them, however, do not efficiently address a major objective of cloud providers: maximizing system utilization while ensuring the QoS. Several approaches promote virtualization capabilities to improve this trade-off. However, the dynamic scheduling of a large number of VMs as part of a large distributed infrastructure is subject to important and hard scalability problems that become even worse when VM image transfers have to be managed. Consequently, most current frameworks schedule VMs statically using a centralized control strategy. In this article, we present distributed VM scheduler, a framework that enables VMs to be scheduled cooperatively and dynamically in large-scale distributed systems. We describe, in particular, how several VM reconfigurations can be dynamically calculated in parallel and applied simultaneously. Reconfigurations are enabled by partitioning the system (i.e., nodes and VMs) on the fly. Partitions are created with a minimum of resources necessary to find a solution to the reconfiguration problem. Moreover, we propose an algorithm to handle deadlocks that may appear because of the partitioning policy. We have evaluated our prototype through simulations and compared our approach with a centralized one. The results show that our scheduler permits VMs to be reconfigured more efficiently: the time needed to manage thousands of VMs on hundreds of machines is typically reduced to a tenth or less.
机译:云计算的主要目标之一是外包数据和应用程序托管,从而实现按使用情况的计算模型。数据和应用程序可以打包在虚拟机(VM)中,虚拟机本身由节点(即物理机)托管。设计了几个框架来管理物理机池上的VM。但是,其中大多数都不能有效地解决云提供商的主要目标:在确保QoS的同时最大化系统利用率。有几种方法可以促进虚拟化功能,以改善这种平衡。但是,作为大型分布式基础架构的一部分,对大量VM进行动态调度会遇到重要且困难的可扩展性问题,当必须管理VM映像传输时,该问题会变得更加严重。因此,大多数当前框架都使用集中控制策略来静态调度VM。在本文中,我们介绍了分布式VM调度程序,该框架使虚拟机能够在大型分布式系统中进行协作和动态调度。我们特别描述了如何并行动态地计算并同时应用几个VM重新配置。通过动态分区系统(即节点和VM)来启用重新配置。使用最少的资源来创建分区,以找到重新配置问题的解决方案。此外,我们提出了一种算法来处理由于分区策略而可能出现的死锁。我们已经通过仿真评估了原型,并将我们的方法与集中式方法进行了比较。结果表明,我们的调度程序允许更有效地重新配置VM:在数百台计算机上管理数千个VM所需的时间通常减少到十分之一或更少。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号