首页> 外文期刊>Concurrency and Computation >Graphics processing unit-accelerated bounding for branch-and-bound applied to a permutation problem using data access optimization
【24h】

Graphics processing unit-accelerated bounding for branch-and-bound applied to a permutation problem using data access optimization

机译:使用数据访问优化将图形处理单元的边界加速应用于置换问题

获取原文
获取原文并翻译 | 示例

摘要

Branch-and-bound (B&B) algorithms are attractive methods for solving to optimality combinatorial optimizationrnproblems using an implicit enumeration of a dynamically built tree-based search space. Nevertheless,rnthey are time-consuming when dealing with large problem instances. Therefore, pruning tree nodesrn(subproblems) is traditionally used as a powerful mechanism to reduce the size of the explored search space.rnPruning requires to perform the bounding operation, which consists of applying a lower bound functionrnto the subproblems generated during the exploration process. Preliminary experiments performed on thernFlow-Shop scheduling problem (FSP) have shown that the bounding operation consumes over 98% of thernexecution time of the B&B algorithm. In this paper, we investigate the use of graphics processing unit (GPU)rncomputing as a major complementary way to speed up the search. We revisit the design and implementationrnof the parallel bounding model on GPU accelerators. The proposed approach enables data access optimization.rnExtensive experiments have been carried out on well-known FSP benchmarks using an Nvidia TeslarnC2050 GPU card. Compared to a CPU-based single core execution using an Intel Core i7-970 processorrnwithout GPU, speedups higher than 100 times faster are achieved for large problem instances. At an equivalentrnpeak performance, GPU-accelerated B&B is twice faster than its multi-core counterpart.
机译:分支定界(B&B)算法是使用动态构建的基于树的搜索空间的隐式枚举来求解最优组合优化问题的有吸引力的方法。然而,它们在处理大型问题实例时非常耗时。因此,修剪树节点rn(subproblems)传统上被用作减小探索的搜索空间大小的强大机制。rnpruning需要执行边界操作,该操作包括对探索过程中生成的子问题应用下界函数。对“流程-车间”调度问题(FSP)进行的初步实验表明,边界操作消耗了B&B算法的执行时间的98%以上。在本文中,我们调查了图形处理单元(GPU)rncomputing作为加快搜索速度的主要补充方法的使用。我们将重新讨论GPU加速器上的并行边界模型的设计和实现。所提出的方法使数据访问优化成为可能。使用Nvidia TeslarnC2050 GPU卡在众所周知的FSP基准上进行了广泛的实验。与使用不带GPU的Intel Core i7-970处理器的基于CPU的单核执行相比,大型问题实例的速度提高了100倍以上。在同等的峰值性能下,GPU加速的B&B比其多核同类产品快两倍。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号