首页> 外文期刊>Concurrency and computation: practice and experience >Self-adaptive workload classification and forecasting for proactive resource provisioning
【24h】

Self-adaptive workload classification and forecasting for proactive resource provisioning

机译:自适应工作负载分类和预测,以主动配置资源

获取原文
获取原文并翻译 | 示例

摘要

As modern enterprise software systems become increasingly dynamic, workload forecasting techniques are gaining an importance as a foundation for online capacity planning and resource management. Time series analysis offers a broad spectrum of methods to calculate workload forecasts based on history monitoring data. Related work in the field of workload forecasting mostly concentrates on evaluating specific methods and their individual optimisation potential or on predicting QoS metrics directly. As a basis, we present a survey on established forecasting methods of the time series analysis concerning their benefits and drawbacks and group them according to their computational overheads. In this paper, we propose a novel self-adaptive approach that selects suitable forecasting methods for a given context based on a decision tree and direct feedback cycles together with a corresponding implementation. The user needs to provide only his general forecasting objectives. In several experiments and case studies based on real-world workload traces, we show that our implementation of the approach provides continuous and reliable forecast results at run-time. The results of this extensive evaluation show that the relative error of the individual forecast points is significantly reduced compared with statically applied forecasting methods, for example, in an exemplary scenario on average by 37%. In a case study, between 55 and 75% of the violations of a given service level objective can be prevented by applying proactive resource provisioning based on the forecast results of our implementation. Copyright © 2014 John Wiley & Sons, Ltd.
机译:随着现代企业软件系统变得越来越动态,工作量预测技术作为在线容量规划和资源管理的基础正变得越来越重要。时间序列分析提供了多种基于历史监视数据来计算工作负荷预测的方法。工作量预测领域中的相关工作主要集中在评估特定方法及其各自的优化潜力,或直接预测QoS指标。在此基础上,我们对已建立的时间序列分析预测方法进行了调查,并对其优缺点进行了分析,并根据其计算开销对其进行了分组。在本文中,我们提出了一种新颖的自适应方法,该方法基于决策树和直接反馈周期以及相应的实现为给定上下文选择合适的预测方法。用户只需要提供他的一般预测目标。在基于实际工作负载跟踪的几个实验和案例研究中,我们表明,该方法的实现可在运行时提供连续且可靠的预测结果。该广泛评估的结果表明,与静态应用的预测方法相比,单个预测点的相对误差显着降低,例如,在示例性方案中,平均降低了37%。在一个案例研究中,通过基于我们实施的预测结果进行主动的资源配置,可以防止在55至75%违反给定服务水平目标的情况。版权所有©2014 John Wiley&Sons,Ltd。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号