首页> 外文期刊>Concurrency and computation: practice and experience >N-body computations using skeletal frameworks on multicore CPU/graphics processing unit architectures: an empirical performance evaluation
【24h】

N-body computations using skeletal frameworks on multicore CPU/graphics processing unit architectures: an empirical performance evaluation

机译:在多核CPU /图形处理单元体系结构上使用骨架框架进行N体计算:经验性能评估

获取原文
获取原文并翻译 | 示例

摘要

With the emergence of general-purpose computation on graphics processing units, high-level approachesrnthat hide the conceptual complexity of the low-level Compute Unified Device Architecture and Open Computing Language platforms are the subject of active research. However, these approaches may requirerna trade-off in terms of achieved performance and utilisation on graphics processing units hardware andrnmay impose algorithmic limitations. In this paper, we present and systematically evaluate the parallelrnperformance of three implementations of the brute force, all-pairsN-body algorithm with skeletal deployments based on the FastFlow, SkePU and Thrust frameworks. Our results indicate that the skeletal framework implementation achieves up to two orders of magnitude speed-up over serial version with a TeslarnM2050 with lower implementation complexity than low-level Compute Unified Device Architecturernprogramming.
机译:随着图形处理单元上通用计算的出现,隐藏低级计算统一设备体系结构和开放计算语言平台的概念复杂性的高级方法成为了积极研究的主题。但是,这些方法可能需要在图形处理单元硬件上实现的性能和利用率之间进行权衡,并且可能会施加算法上的限制。在本文中,我们提出并系统地评估了基于FastFlow,SkePU和Thrust框架的三种暴力实现,具有骨骼部署的全对N体算法的并行性能。我们的结果表明,骨架框架的实现比TeslarnM2050的串行版本提高了两个数量级,与低级别的Compute Unified Device Architecture编程相比,实现复杂度更低。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号