首页> 外文期刊>Concurrency and computation: practice and experience >A regression-based performance prediction framework for synchronous iterative algorithms on general purpose graphical processing unit clusters
【24h】

A regression-based performance prediction framework for synchronous iterative algorithms on general purpose graphical processing unit clusters

机译:基于回归的性能预测框架,用于通用图形处理单元集群上的同步迭代算法

获取原文
获取原文并翻译 | 示例

摘要

Heterogeneous performance prediction models are valuable tools to accurately predict application runtime,rnallowing for efficient design space exploration and application mapping. The existing performance modelsrnrequire intricate system architecture knowledge, making the modeling task difficult. In this research, wernpropose a regression-based performance prediction framework for general purpose graphical processing unitrn(GPGPU) clusters that statistically abstracts the system architecture characteristics, enabling performancernprediction without detailed system architecture knowledge. The regression-based framework targets deterministicrnsynchronous iterative algorithms using our synchronous iterative GPGPU execution model and isrnbroken into two components: the computation component that models the GPGPU device and host computationsrnand the communication component that models the network-level communications. The computationrncomponent regression models use algorithm characteristics such as the number of floating-point operationsrnand total bytes as predictor variables and are trained using several small, instrumented executions of synchronousrniterative algorithms that include a range of floating-point operations-to-byte requirements. Thernregression models for network-level communications are developed using micro-benchmarks and employrndata transfer size and processor count as predictor variables. Our performance prediction framework achievesrnprediction accuracy over 90% compared with the actual implementations for several tested GPGPU clusterrnconfigurations. The end goal of this research is to offer the scientific computing community, an accurate andrneasy-to-use performance prediction framework that empowers users to optimally utilize the heterogeneousrnresources.
机译:异构性能预测模型是准确预测应用程序运行时间的有价值的工具,从而无法进行有效的设计空间探索和应用程序映射。现有的性能模型需要复杂的系统架构知识,从而使建模任务变得困难。在这项研究中,我们为通用图形处理单元(GPGPU)集群提出了一种基于回归的性能预测框架,该集群统计地抽象了系统架构特征,从而无需进行详细的系统架构知识即可进行性能预测。基于回归的框架使用我们的同步迭代GPGPU执行模型来针对确定性同步迭代算法,并将其分解为两个组件:对GPGPU设备和主机计算进行建模的计算组件以及对网络级通信进行建模的通信组件。计算组件回归模型使用诸如浮点运算数和总字节数之类的算法特征作为预测变量,并使用包括同步浮点运算到字节要求的范围在内的几种小型,同步化的算法执行进行训练。使用微基准开发了用于网络级通信的回归模型,并将数据传输大小和处理器数量用作预测变量。与几种经过测试的GPGPU集群配置的实际实现相比,我们的性能预测框架可实现90%以上的预测精度。这项研究的最终目标是为科学计算社区提供一个准确且易于使用的性能预测框架,使用户能够最佳地利用异构资源。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号