首页> 外文期刊>Concurrency, practice and experience >Evaluating map reduce tasks scheduling algorithms over cloud computing infrastructure
【24h】

Evaluating map reduce tasks scheduling algorithms over cloud computing infrastructure

机译:在云计算基础架构上评估地图缩减任务调度算法

获取原文
获取原文并翻译 | 示例

摘要

Efficiently scheduling MapReduce tasks is considered as one of the major challenges that face MapReducernframeworks. Many algorithms were introduced to tackle this issue. Most of these algorithms are focusing onrnthe data locality property for tasks scheduling. The data locality may cause less physical resources utilizationrnin non-virtualized clusters and more power consumption. Virtualized clusters provide a viable solutionrnto support both data locality and better cluster resources utilization. In this paper, we evaluate the majorrnMapReduce scheduling algorithms such as FIFO, Matchmaking, Delay, and multithreading locality (MTL)rnon virtualized infrastructure. Two major factors are used to test the evaluated algorithms: the simulation timernand the energy consumption. The evaluated schedulers are compared, and the results show the superiorityrnand the preference of the MTL scheduler over the other existing schedulers. Also, we present a comparisonrnstudy between virtualized and non-virtualized clusters for MapReduce tasks scheduling.
机译:有效调度MapReduce任务被视为MapReducernframeworks面临的主要挑战之一。引入了许多算法来解决此问题。这些算法大多数都集中在任务调度的数据局部性属性上。数据位置可能会导致非虚拟群集中的物理资源利用率降低,并导致更多的功耗。虚拟化群集提供了可行的解决方案,可以支持数据局部性和更好的群集资源利用。在本文中,我们评估了主要的MapReduce调度算法,例如FIFO,匹配,延迟和多线程局部性(MTL)非虚拟化基础结构。有两个主要因素用于测试评估算法:仿真时间和能耗。比较评估的调度程序,结果显示MTL调度程序相对于其他现有调度程序的优越性和优先级。此外,我们提出了针对MapReduce任务调度的虚拟群集和非虚拟群集之间的比较研究。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号