首页> 外文期刊>Concurrency and computation: practice and experience >Predicting potential deadlocks in multithreaded programs
【24h】

Predicting potential deadlocks in multithreaded programs

机译:预测多线程程序中的潜在死锁

获取原文
获取原文并翻译 | 示例

摘要

In a multithreaded program, competition of threads for shared resources raises the deadlock possibility,rnwhich narrows the system liveness. Because such errors appear in specific schedules of concurrent executionsrnof threads, runtime verification of threads behavior is a significant concern. In this study, we extendedrnour previous approach for prediction of runtime behavior of threads may lead to an impasse. Such a predictionrnis of importance because of the nondeterministic manner of competing threads. The prediction processrntries to forecast future behavior of threads based on their observed behavior. To this end, we map observedrnbehavior of threads into time-series data sets and use statistical and artificial intelligence methods for forecastingrnsubsequent members of the sets as future behavior of the threads. The deadlock prediction is carriedrnout based on probing the allocation graph obtained from actual and predicted allocation of resources tornthreads. In our approach, we use an artificial neural network (ANN) because ANNs enjoy the applicable performancernand flexibility in predicting complex behavior. Using three case studies, we contrasted results ofrnthe current and our previous approaches to demonstrate results.
机译:在多线程程序中,线程对共享资源的竞争增加了死锁的可能性,从而缩小了系统的生命力。由于此类错误出现在并发执行线程的特定计划中,因此线程行为的运行时验证是一个非常重要的问题。在这项研究中,我们扩展了以前的方法来预测线程的运行时行为,可能会导致僵局。由于竞争线程的不确定性,这种预测很重要。预测过程将根据观察到的行为来预测线程的未来行为。为此,我们将观察到的线程行为映射到时间序列数据集中,并使用统计和人工智能方法预测线程集的后续成员作为线程的未来行为。基于探测从资源撕裂线程的实际分配和预测分配中获得的分配图来执行死锁预测。在我们的方法中,我们使用人工神经网络(ANN),因为人工神经网络在预测复杂行为方面享有适用的性能和灵活性。通过三个案例研究,我们对比了当前方法和以前方法的结果以证明结果。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号