首页> 外文期刊>Concurrency and computation: practice and experience >Using a sparse promoting method in linear programming approximations to schedule parallel jobs
【24h】

Using a sparse promoting method in linear programming approximations to schedule parallel jobs

机译:在线性规划近似中使用稀疏提升方法来调度并行作业

获取原文
获取原文并翻译 | 示例

摘要

In this paper, we tackle the well-known problem of scheduling a collection of parallel jobs on a set of processorsrneither in a cluster or in a multiprocessor computer. For the makespan objective, that is, the completionrntime of the last job, this problem has been shown to be NP-hard, and several heuristics have already beenrnproposed to minimize the execution time. In this paper, we consider both rigid and moldable jobs. Our mainrncontribution is the introduction of a new approach to the scheduling problem, based on the recent discoveriesrnin the field of compressed sensing. In the proposed approach, all possible positions and shapes of the jobsrnare encoded into a matrix, and the scheduling is performed by selecting the best columns under natural constraints.rnThus, the solution to the new scheduling formulation is naturally sparse, and we may use appropriaternrelaxations to achieve the optimization task in the quickest possible way. Among many possible relaxationrnstrategies, we choose to minimize the ℓ_p-quasi-norm for p∈(0,1). Minimization of the `p-quasi-norm isrnimplemented via a successive linear programming approximation heuristic. We propose several new algorithmsrnbased on this approach, and we assess their efficiency through simulations. The experiments show thatrnthe scheme outperforms the classic Largest Task First list based algorithm for scheduling small to mediumrninstances but needs improvements to compete on larger numbers of jobs.
机译:在本文中,我们解决了一个众所周知的问题,即在集群或多处理器计算机上的一组处理器上调度并行作业的集合。对于制造目标,即最后一项工作的完成时间,该问题已显示为NP难题,并且已经提出了几种启发式方法以最大程度地减少执行时间。在本文中,我们同时考虑了刚性和可模制作业。我们的主要贡献是基于压缩感知领域的最新发现,引入了一种解决调度问题的新方法。在提出的方法中,将作业的所有可能的位置和形状编码为矩阵,并通过在自然约束下选择最佳列来执行调度。因此,新调度公式的解决方案自然是稀疏的,我们可以使用适当的松弛以最快的方式完成优化任务。在许多可能的松弛策略中,我们选择最小化p∈(0,1)的ℓ_p-准范数。通过连续线性规划近似启发式实现最小化p-准范数。我们基于这种方法提出了几种新算法,并通过仿真评估了它们的效率。实验表明,该方案优于传统的基于“最大任务优先”列表的算法来调度中小型实例,但需要改进才能在大量工作上竞争。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号