首页> 外文期刊>Concurrency and computation: practice and experience >Protecting location privacy and query privacy: a combined clustering approach
【24h】

Protecting location privacy and query privacy: a combined clustering approach

机译:保护位置隐私和查询隐私:组合的群集方法

获取原文
获取原文并翻译 | 示例

摘要

In this paper, a combined clustering algorithm namely enhanced clustering cloak (ECC), for protectingrnlocation privacy and query privacy is proposed. An iterative K-means clustering method is developed torngroup the user requests into clusters for providing location safety. Meanwhile, a hierarchical clusteringrnmethod for preserving the query privacy is used when creating clusters. ECC provides users with desirablernspatial and temporal tolerances. It can defend sampling attacks, homogeneity attacks, and query associationrnattacks simultaneously. Simulation results present that the ECC algorithm not only has merits in smallerrnnumber of clusters, shorter cloaking time, higher entropy and QoS level but also preserves location privacyrnand query privacy in continuous location based services.
机译:提出了一种用于保护位置隐私和查询隐私的组合聚类算法,即增强聚类披风(ECC)。开发了一种迭代的K均值聚类方法,将用户请求分组到聚类中以提供位置安全性。同时,在创建集群时使用了用于保护查询隐私的分层聚类方法。 ECC为用户提供了理想的空间和时间公差。它可以同时防御采样攻击,同质攻击和查询关联攻击。仿真结果表明,ECC算法不仅具有簇数少,隐蔽时间短,熵和QoS水平高的优点,而且在连续的基于位置的服务中还保留了位置隐私和查询隐私。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号