首页> 外文期刊>Concurrency and computation: practice and experience >Implementation and performance analysis of efficient index structures for DNA search algorithms in parallel platforms
【24h】

Implementation and performance analysis of efficient index structures for DNA search algorithms in parallel platforms

机译:并行平台中DNA搜索算法高效索引结构的实现和性能分析

获取原文
获取原文并翻译 | 示例

摘要

Because of the large datasets that are usually involved in deoxyribonucleic acid (DNA) sequence alignment,rnthe use of optimal local alignment algorithms (e.g., Smith–Waterman) is often unfeasible in practicalrnapplications. As such, more efficient solutions that rely on indexed search procedures are often preferredrnto significantly reduce the time to obtain such alignments. Some data structures that are usually adopted tornbuild such indexes are suffix trees, suffix arrays, and the hash tables of q-mers.rnThis paper presents a comparative analysis of highly optimized parallel implementations of index-basedrnsearch algorithms using these three distinct data structures, considering two different parallel platforms: arnhomogeneous multi-core central processing unit (CPU) and a NVidia Fermi graphics processing unit (GPU).rnContrasting to what happens with CPU implementations, the obtained experimental results reveal that GPUrnimplementations clearly favor the suffix arrays, because of the achieved performance in terms of memoryrnaccesses. Furthermore, the results also reveal that both the suffix trees and suffix arrays outperform the hashrntables of q-mers when dealing with the largest datasets.rnWhen compared with a quad-core CPU, the results demonstrate the possibility to achieve speedups asrnhigh as 65 with the GPU when considering a suffix-array index, thus making it an adequate choice forrnhigh-performance bioinfomatics applications.
机译:由于脱氧核糖核酸(DNA)序列比对通常涉及大量数据集,因此在实际应用中使用最佳局部比对算法(例如Smith-Waterman)通常是不可行的。这样,通常优选依赖索引搜索过程的更有效的解决方案以显着减少获得这种对齐的时间。经常采用这种构建索引的数据结构包括后缀树,后缀数组和q-mers哈希表。本文对使用这三种不同数据结构的基于索引的搜索算法的高度优化并行实现进行了比较分析。两种不同的并行平台:同质多核中央处理器(CPU)和NVidia Fermi图形处理器(GPU)。rn与CPU实现的情况相反,获得的实验结果表明,GPU实现明显支持后缀数组,因为在内存访问方面实现了性能。此外,结果还显示,在处理最大数据集时,后缀树和后缀数组均优于q-mers的哈希表。与四核CPU相比,结果表明使用四核CPU时,加速比可高达65。 GPU在考虑后缀数组索引时,因此使其成为高性能生物信息学应用程序的充分选择。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号