首页> 外文期刊>Concurrency and computation: practice and experience >Divide-and-conquer approach for solving singular value decomposition based on MapReduce
【24h】

Divide-and-conquer approach for solving singular value decomposition based on MapReduce

机译:基于MapReduce的奇异值分解的分治法

获取原文
获取原文并翻译 | 示例

摘要

Singular value decomposition (SVD) shows strong vitality in the area of information analysis and has significant application value in most of the scientific big data fields. However, with the rapid development of Internet, the information online reveals fast growing trend. For a large-scale matrix, applying SVD computation directly is both time consuming and memory demanding. There are many works available to speed up the computation of SVD based on the message passing interface model. However, to deal with large-scale data processing, a MapReduce model has many advantages over a message passing interface model, such as fault tolerance, load balancing and simplicity. For a MapReduce environment, existing approaches only focus on low rank SVD approximation and tall-and-skinny matrix SVD computation, and there are no implementations of full rank SVD computation. In this paper, we propose a MapReduce-based implementation for solving divide-and-conquer SVD algorithm. To achieve high performance, we design a two-stage task scheduling strategy based on the mathematical characteristics of divide-and-conquer SVD algorithm. To further strengthen the performance, we propose a row-index-based divide algorithm, a pipelined task scheduling method, and revised block matrix multiplication in MapReduce framework. Experimental result shows the efficiency of our algorithm. Our implementation can accommodate full rank SVD computation of large-scale matrix very efficiently. Copyright © 2014 John Wiley & Sons, Ltd.
机译:奇异值分解(SVD)在信息分析领域显示出强大的生命力,并在大多数科学大数据领域中具有重要的应用价值。但是,随着Internet的快速发展,在线信息呈现出快速增长的趋势。对于大型矩阵,直接应用SVD计算既耗时又需要内存。基于消息传递接口模型,有许多工作可用于加快SVD的计算。但是,要处理大规模数据处理,与消息传递接口模型相比,MapReduce模型具有许多优势,例如容错,负载平衡和简单性。对于MapReduce环境,现有方法仅关注低秩SVD逼近和高瘦矩阵SVD计算,而没有实现全秩SVD计算的实现。在本文中,我们提出了一种基于MapReduce的解决方案,用于解决分治式SVD算法。为了实现高性能,我们基于分治式SVD算法的数学特征设计了一种两阶段任务调度策略。为了进一步增强性能,我们在MapReduce框架中提出了基于行索引的除法,流水线任务调度方法和修订的块矩阵乘法。实验结果表明了该算法的有效性。我们的实现可以非常有效地适应大规模矩阵的全等级SVD计算。版权所有©2014 John Wiley&Sons,Ltd.

著录项

  • 来源
  • 作者单位

    Huazhong University of Science and Technology School of Computer Science and Technology Hubei Wuhan China;

    Huazhong University of Science and Technology School of Computer Science and Technology Hubei Wuhan China;

    Huazhong University of Science and Technology School of Software Engineering Hubei Wuhan China;

    Virginia Commonwealth University Department of Electrical and Computer Engineering Richmond VA USA;

    Huazhong University of Science and Technology School of Computer Science and Technology Hubei Wuhan China;

    Huazhong University of Science and Technology School of Computer Science and Technology Hubei Wuhan China;

    North Dakota State University Department of Electrical and Computer Engineering Fargo ND USA;

    State University of New York–New Paltz Department of Computer Science New Paltz New York NY USA;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    distributed computation; divide‐and‐conquer; MapReduce; singular value decomposition;

    机译:分布式计算;分而治之;MapReduce;奇异值分解;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号