首页> 外文期刊>Concurrency, practice and experience >A task-based approach for finding SCCs in real-world graphs on external memory
【24h】

A task-based approach for finding SCCs in real-world graphs on external memory

机译:一种基于任务的方法,用于在外部存储器的真实图形中查找SCC

获取原文
获取原文并翻译 | 示例

摘要

Finding strongly connected components (SCCs) in graphs is one of the important research topicsrnof graph data mining. Traditional SCC-finding methods need to load the whole graph intornmain memory before actual processing, whichmakes them inappropriate to process today's largerngraphs. Although it is cost-effective to conductive SCC-finding in the external memory (EM) graphrnprocessing systems, existing EM systems are still inefficient on such workload for 2 reasons:rndata-parallel processing model and inefficient graph mutation mechanism.rnIn this paper, we propose a task-based approach, named as TAS, for finding SCCs in largernreal-world graphs.TAS encapsulates individual graph dataset and the SCC-finding algorithms conductedrnon it as an independent task. By this strategy, different algorithms can be assigned torndifferent datasets according to the stage of processing or the size of the dataset. By graduallyrnremoving unneeded data, ie, the known SCCs, with an efficient graph mutation method, TAS continuouslyrnreduces the scale of the problem to accelerate processing. Performance evaluation onrnlarge real-world graphs show that TAS greatly outperforms existing EMsolutions on finding SCCsrn(eg, 55.2x faster than GraphChi and 40.3x faster than X-Stream).
机译:在图中发现强连接组件(SCC)是图数据挖掘的重要研究主题之一。传统的SCC查找方法需要在实际处理之前将整个图形加载到主内存中,这使其不适用于处理当今更大的图形。尽管在外部存储器(EM)图形处理系统中进行SCC查找具有成本效益,但现有的EM系统在这种工作量上仍然效率低下,原因有两个:数据并行处理模型和效率低的图形变异机制。提出了一种名为TAS的基于任务的方法,用于在较大的真实世界图中查找SCC.TAS封装了单个图数据集,并将SCC查找算法作为独立任务进行。通过这种策略,可以根据处理的阶段或数据集的大小将不同的算法分配给不同的数据集。通过使用有效的图形突变方法逐渐删除不需要的数据(即已知的SCC),TAS不断减小了问题的规模,从而加快了处理速度。在大型现实图形上的性能评估表明,在找到SCC时,TAS大大优于现有的EMsolutions(例如,比GraphChi快55.2倍,比X-Stream快40.3倍)。

著录项

  • 来源
    《Concurrency, practice and experience》 |2017年第24期|e4164.1-e4164.11|共11页
  • 作者单位

    School of Computer Science and Technology,Huazhong University of Science andTechnology,Wuhan 430074, China;

    School of Computer Science and Technology,Huazhong University of Science andTechnology,Wuhan 430074, China;

    School of Computer Science and Technology,Huazhong University of Science andTechnology,Wuhan 430074, China;

    School of Computer Science and Technology,Huazhong University of Science andTechnology,Wuhan 430074, China;

    School of Computer Science and Technology,Huazhong University of Science andTechnology,Wuhan 430074, China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    big data; graph processing; strongly connected components;

    机译:大数据;图形处理;牢固连接的组件;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号