首页> 外文期刊>Concurrency, practice and experience >A generic parallel pattern interface for stream and data processing
【24h】

A generic parallel pattern interface for stream and data processing

机译:通用并行模式接口,用于流和数据处理

获取原文
获取原文并翻译 | 示例

摘要

Current parallel programming frameworks aid developers to a great extent in implementingrnapplications that exploit parallel hardware resources. Nevertheless, developers require additionalrnexpertise to properly use and tune them to operate efficiently on specific parallel platforms.rnOn the other hand, porting applications between different parallel programming modelsrnand platforms is not straightforward and demands considerable efforts and specific knowledge.rnApart from that, the lack of high-level parallel pattern abstractions, in those frameworks, furtherrnincreases the complexity in developing parallel applications. To pave the way in this direction, thisrnpaper proposes GRPPI, a generic and reusable parallel pattern interface for both stream processingrnand data-intensive C++ applications. GRPPI accommodates a layer between developers andrnexisting parallel programming frameworks targetingmulti-core processors, such as C++ threads,rnOpenMP and Intel TBB, and accelerators, as CUDA Thrust. Furthermore, thanks to its high-levelrnC++ application programming interface and pattern composability features, GRPPI allows usersrnto easily expose parallelism via standalone patterns or patterns compositions matching in sequentialrnapplications.We evaluate this interface using an image processing use case and demonstraternits benefits from the usability, flexibility, and performance points of view. Furthermore, we analyzernthe impact of using stream anddata pattern compositions on CPUs,GPUsand heterogeneousrnconfigurations.
机译:当前的并行编程框架在很大程度上帮助开发人员实现利用并行硬件资源的应用程序。但是,开发人员需要额外的专业知识才能正确使用和调整它们,以在特定的并行平台上有效地运行。另一方面,在不同的并行编程模型和平台之间移植应用程序并不简单,需要大量的工作和特定的知识。在那些框架中,高级并行模式抽象进一步增加了开发并行应用程序的复杂性。为了朝这个方向铺平道路,本文提出了GRPPI,这是一种通用且可重用的并行模式接口,用于流处理和数据密集型C ++应用程序。 GRPPI在开发人员和现有的针对多核处理器(例如C ++线程,rnOpenMP和Intel TBB)和加速器(如CUDA Thrust)的并行编程框架之间提供了一层。此外,由于其高级的C ++应用程序编程接口和模式可组合性功能,GRPPI允许用户通过独立的模式或顺序应用程序中匹配的模式组成轻松暴露并行性。我们使用图像处理用例评估此接口,并展示其可用性,灵活性,以及性能方面的观点。此外,我们分析了使用流和数据模式组成对CPU,GPU和异构配置的影响。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号