首页> 外文期刊>Concurrency and Computation >A measurement study of device-to-device sharing in mobile social networks based on Spark
【24h】

A measurement study of device-to-device sharing in mobile social networks based on Spark

机译:基于Spark的移动社交网络中设备到设备共享的度量研究

获取原文
获取原文并翻译 | 示例

摘要

Because of the exponential growth of mobile users' demand for multimedia services in recent years, the increasing network traffic load gets a close attention of the mobile network operators. For the mobile traffic explosion issue to be solved, there are many efforts trying to offload the mobile traffic from infrastructure cellular links to direct local short-range communications among groups of users, which is called device-todevice sharing (D2D) in mobile social networks. Although there have been a number of studies for improving the exploitation of friends, contents, and sharing performance, there is no any large-scale measurement-based study to analyze the realistic D2D sharing service. We focus on the empirical trace from Xender, a popular mobile application for D2D sharing, and implement an effective big data processing platform based on Spark with customized algorithms. Extensive analysis and discussions are carried out from the perspectives of general time series statistics, content properties, and social graph basics. The trace-driven analysis exploits a number of implications regarding power law distribution for content popularity disparity, clustering effects of user relationships, and so on. We further discuss the potentials of improving Xender's quality of service and optimizing its system resource, and hopefully, our study can offer useful guidelines for not only Xender but also those growing global social D2D sharing services.
机译:由于近年来移动用户对多媒体服务的需求呈指数增长,不断增加的网络流量负载引起了移动网络运营商的密切关注。为了解决移动流量爆炸问题,需要进行许多工作,以尝试从基础架构蜂窝链路转移移动流量,以在用户组之间直接进行本地短距离通信,这在移动社交网络中称为设备到设备共享(D2D) 。尽管已经进行了许多研究,以改善对朋友,内容和共享性能的利用,但是还没有任何大规模的基于测量的研究来分析现实的D2D共享服务。我们专注于Xender的经验跟踪,Xender是D2D共享的流行移动应用程序,并基于Spark与自定义算法实现了有效的大数据处理平台。从常规时间序列统计,内容属性和社会图基础知识的角度进行了广泛的分析和讨论。跟踪驱动的分析利用了有关幂定律分布的多种含义,以解决内容流行度差异,用户关系的聚类效果等问题。我们进一步讨论了提高Xender服务质量和优化其系统资源的潜力,希望我们的研究不仅可以为Xender提供有用的指导,而且还可以为那些正在增长的全球社交D2D共享服务提供有用的指导。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号