首页> 外文期刊>Concurrency and computation: practice and experience >Particle swarm optimization-deep belief network-based rare class prediction model for highly class imbalance problem
【24h】

Particle swarm optimization-deep belief network-based rare class prediction model for highly class imbalance problem

机译:基于粒子群优化-基于深度信念网络的稀有类高级预测模型

获取原文
获取原文并翻译 | 示例

摘要

Rare class imbalance problems, which involve the classification of minority or rare class, are dif­ficult, because the size of the rare class is smaller than the majority class. Since majority class prediction is easy, its accuracy seems to be also high. However, the minority classes cannot be accurately predicted, and for this reason, when the prediction model performance is evaluated by considering only the accuracy, it does not indicate whether the model can predict the minority classes. Therefore, a rare class prediction technique is required. In this study, a rare class predic­tion model is proposed for minority class prediction. In addition, a dataset of a semiconductor manufacturing process with class imbalance problems was used to create a fault detection model. This prediction model uses data preprocessing to build the characteristics and data set required by the rare classes. To distinguish the rare classes related to the required characteristics, we used standard deviation and Euclidean distance to perform the feature selection. In addition, a particle swarm optimization-deep belief network was applied to create a classifier. The model proposed in this research presents outstanding performance and is appropriate for highly class imbalance problems.
机译:涉及少数群体或稀有阶层的分类的稀有阶层失衡问题是困难的,因为稀有阶层的规模小于多数阶层。由于多数类别的预测很容易,因此其准确性似乎也很高。但是,无法准确预测少数派类别,因此,当仅考虑准确性来评估预测模型的性能时,它无法指示模型是否可以预测少数派类别。因此,需要稀有类别预测技术。在这项研究中,提出了一种用于少数族裔预测的稀有类预测模型。另外,使用具有类不平衡问题的半导体制造过程的数据集来创建故障检测模型。该预测模型使用数据预处理来构建稀有类所需的特征和数据集。为了区分与所需特征相关的稀有类别,我们使用标准差和欧几里得距离来进行特征选择。另外,应用了粒子群优化-深度置信网络创建分类器。本研究中提出的模型具有出色的性能,适用于高度不平衡的问题。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号