首页> 外文期刊>Concurrency and computation: practice and experience >Distributed computing of distance-based graph invariants forrnanalysis and visualization of complex networks
【24h】

Distributed computing of distance-based graph invariants forrnanalysis and visualization of complex networks

机译:基于距离的图不变性的分布式计算,用于复杂网络的分析和可视化

获取原文
获取原文并翻译 | 示例

摘要

We present a new framework for analysis and visualization of complex networks based on structural informationrnretrieved from their distance k-graphs and B-matrices. The construction of B-matrices for graphsrnwith more than 1 million edges requires massive Breadth-First Search (BFS) computations and is facilitatedrnusing new software prepared for distributed environments. Our framework benefits from data parallelismrninherent to all-pair shortest-path problem and extends Cassovary, an open-source in-memory graph processingrnengine, to enable multinode computation of distance k-graphs and related graph descriptors. Wernalso introduce a new type of B-matrix, constructed using clustering coefficient vertex invariant, which canrnbe generated with a computational effort comparable with the one required for a previously known degreernB-matrix, while delivering an additional set of information about graph structure. Our approach enables efficientrngeneration of expressive, multidimensional descriptors useful in graph embedding and graph miningrntasks. The experiments showed that the new framework is scalable and for specific all-pair shortest-path taskrnprovides better performance than existing generic graph processing frameworks.We further present how therndeveloped tools helped in the analysis and visualization of real-world graphs from Stanford Large NetworkrnDataset Collection.
机译:我们提出了一个新的框架,用于基于从距离k图和B矩阵检索的结构信息来分析和可视化复杂网络。拥有超过一百万条边的图的B矩阵的构造需要大量的广度优先搜索(BFS)计算,并且可以使用为分布式环境准备的新软件来进行简化。我们的框架受益于所有对最短路径问题固有的数据并行性,并扩展了Cassovary(一种开源的内存中图形处理引擎),以实现距离k-图和相关图描述符的多节点计算。 Wern还介绍了一种使用聚类系数顶点不变式构造的新型B矩阵,该B矩阵可通过与以前已知的degreeB矩阵所需的计算量相当的计算工作来生成,同时提供有关图结构的其他信息集。我们的方法可以有效地生成可用于图形嵌入和图形挖掘任务的表达性多维描述符。实验表明,新框架具有可扩展性,并且针对特定的全对最短路径任务提供了比现有的通用图形处理框架更好的性能。我们进一步介绍了开发的工具如何帮助分析和可视化来自Stanford Large Network的真实图形。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号