首页> 外文期刊>Concurrency and computation: practice and experience >Time aware genetic algorithm for forest fire propagationrnprediction: exploiting multi-core platforms
【24h】

Time aware genetic algorithm for forest fire propagationrnprediction: exploiting multi-core platforms

机译:森林火灾传播时间预测遗传算法:利用多核平台

获取原文
获取原文并翻译 | 示例

摘要

Forest fire propagation prediction is a crucial issue when fighting these hazards as efficiently as possible.rnSeveral propagation models have been developed and integrated in computer simulators. Such modelsrnrequire a set of input parameters that, in some cases, are difficult to know or even estimate preciselyrnbeforehand Therefore, a calibration technique based on genetic algorithm (GA) was introduced to reducernthe uncertainty in input parameters values and improve the accuracy of the predictions. Such a techniquernrequires the execution of a set of simulations and several iterations of the process to calibrate the values ofrnthe input parameters. To reduce the execution time of this calibration stage, an Message Passing Interfacernmaster/worker scheme was developed to distribute the simulations of one iteration among the workerrnprocesses. However, the execution time of each simulation varies drastically depending on the particularrninput parameters used, provoking a significant load imbalance. To overcome this imbalance and reducernexecution time to operational requirements, core allocation policies have been developed. These policies arernbased on execution time estimation and classification of simulations according to the estimated executionrntime. Then, multicore capabilities of the current systems are applied to devote more resources (cores) to thernlongest simulations reducing the load imbalance. These simulations that are estimated as taking too long,rneven when many resources are devoted to them, require especial consideration. So, a generation time limitrnhas been introduced, and three different strategies have been designed considering individuals that exceed therngeneration execution time limit. In the first one, the longest individuals are replaced before starting thernexecution with shorter individuals (Time Aware Core allocation with replacement). In the second one,rnthese individuals are executed, but when the generation limit is reached, the individuals still executing arernkilled (Time Aware Core allocation without replacement). In the third one, all the individuals are executedrnnormally, and when the generation time limit is reached, the GA is applied considering the individuals thatrnhave finished their executions, while the individuals still executing are allowed to continue running and arernconsidered by the GA when they finish. The three strategies have been tested in real scenarios, and thernresults show these policies significantly improve the calibration accuracy within the superimposed deadlines.rn© 2016 The Authors. Concurrency and Computation: Practice and Experience Published by John Wiley &rnSons Ltd.
机译:在尽可能有效地应对这些危害时,森林火灾的传播预测是至关重要的问题。rn已经开发了几种传播模型并将其集成到计算机模拟器中。这样的模型需要输入参数集,在某些情况下,这些输入参数在某些情况下甚至很难事先知道甚至无法精确估计。因此,引入了一种基于遗传算法(GA)的校准技术,以减少输入参数值的不确定性并提高预测的准确性。这种技术需要执行一组模拟和过程的多次迭代以校准输入参数的值。为了减少此校准阶段的执行时间,开发了一种消息传递接口主/工作程序方案,以在工作进程之间分配一次迭代的模拟。但是,每个仿真的执行时间会根据所使用的特定输入参数而发生巨大变化,从而导致明显的负载不平衡。为了克服这种不平衡并减少执行到运营需求的时间,已经制定了核心分配政策。这些策略基于执行时间估计,并根据估计的执行时间对模拟进行分类。然后,使用当前系统的多核功能将更多的资源(核)投入到最长的仿真中,以减少负载不平衡。估计这些模拟花费的时间太长,即使有很多资源专用于它们,也需要特别考虑。因此,引入了发电时间限制,并考虑了超过发电执行时间限制的个人,设计了三种不同的策略。在第一个中,最长的个人将被替换,然后以较短的个人开始执行(替换的时间感知核心分配)。在第二个中,这些个人被执行,但是当达到世代限制时,仍在执行中的个人被杀死(无需替换的时间感知核心分配)。在第三种方法中,所有人员均被正常执行,并且在达到生成时间限制时,将考虑已完成执行的人员来应用GA,而仍在执行的人员则被允许继续运行并在完成后由GA予以考虑。这三种策略已在实际场景中进行了测试,结果表明这些策略在叠加的期限内显着提高了校准精度。©2016作者。并发与计算:实践与经验,John Wiley&rnSons Ltd.发布

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号