首页> 外文期刊>Concurrency and Computation >An improved anonymity model for big data security based on clustering algorithm
【24h】

An improved anonymity model for big data security based on clustering algorithm

机译:一种改进的基于聚类算法的大数据安全匿名模型

获取原文
获取原文并翻译 | 示例

摘要

The accumulation of massive data generates the new concept of big data. The relationships hidden in bigrndata can bring great benefits, which have attracted public attentions. Meanwhile, the challenges of big datarnsecurity are also more serious than ever. Privacy disclosure is one of the most concerned problems, and thernprivacy protection of big data is more difficult than traditional information protection. The technology ofrndata publishing anonymous protection can provide privacy protection with the respect of data releasing.rnK-anonymity and L-diversity are two kinds of anonymity model. Their main idea is to generalize the valuernof quasi-identifier and make the data accord with the model. In this paper, we propose the improved modelrnwhich integrate K-anonymity with L-diversity and can solve the problem of imbalanced sensitive attributerndistribution. K-member clustering algorithm can translate the problem of anonymity into the problem ofrnclustering and find a set of equivalence classes in which the records will be generalized to the same value.rnWe utilize K-member clustering algorithm to realize the improved anonymity model which can reduce thernalgorithm execution time and information loss. The integration of anonymity model and clustering algorithmrnmakes the generalization process more efficient, which is particularly important for big data.
机译:海量数据的积累产生了大数据的新概念。 bigrndata中隐藏的关系可以带来巨大的好处,引起了公众的关注。同时,大数据安全性的挑战也比以往更加严重。隐私公开是最令人关注的问题之一,大数据的隐私保护比传统的信息保护更加困难。数据发布匿名保护技术可以在数据发布方面提供隐私保护。rnK匿名和L多样性是两种匿名模型。他们的主要思想是概括值rno准标识符并使​​数据符合模型。本文提出了一种改进的模型,该模型将K-匿名性与L-多样性集成在一起,可以解决敏感属性分布不平衡的问题。 K成员聚类算法可以将匿名问题转化为聚类问题,并找到一组等价类,其中记录将被推广到相同的值。我们利用K成员聚类算法来实现改进的匿名模型,该模型可以减少算法执行时间和信息丢失。匿名模型和聚类算法的集成使泛化过程更加高效,这对于大数据尤为重要。

著录项

  • 来源
    《Concurrency and Computation》 |2017年第7期|e3902.1-e3902.13|共13页
  • 作者单位

    School of Computer and Software, Jiangsu Engineering Center of Network Monitoring, Jiangsu Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Nanjing University of Information Science & Technology, Nanjing 210044, China;

    School of Computer and Software, Jiangsu Engineering Center of Network Monitoring, Jiangsu Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Nanjing University of Information Science & Technology, Nanjing 210044, China;

    School of Computer and Software, Jiangsu Engineering Center of Network Monitoring, Jiangsu Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Nanjing University of Information Science & Technology, Nanjing 210044, China;

    College of Information Engineering, Yangzhou University, Yangzhou, China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    big data; privacy protection; data publishing; K-anonymity; L-diversity; clustering;

    机译:大数据;隐私保护;数据发布;K-匿名性;L多样性聚类;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号