首页> 外文期刊>Concurrency and computation: practice and experience >Personalized extended (˛, k)-anonymity model forrnprivacy-preserving data publishing
【24h】

Personalized extended (˛, k)-anonymity model forrnprivacy-preserving data publishing

机译:个性化扩展(˛,k)匿名模型,用于保护隐私的数据发布

获取原文
获取原文并翻译 | 示例

摘要

General (α, k)-anonymity model is a widely used method in privacy-preserving data publishing, but it cannotrnprovide personalized anonymity. At present, two main schemes for personalized anonymity are thernindividual-oriented anonymity and the sensitive value-oriented anonymity. Unfortunately, the existing personalizedrnanonymity models, designed for any of the aforementioned schemes for privacy-preserving datarnpublishing, are not effective enough to meet the personalized privacy preservation requirement. In thisrnpaper, we propose a novel personalized extended scheme to provide the personalized services in generalrn(α, k)-anonymity model. The sensitive value-oriented anonymity is combined with the individual-orientedrnanonymity in the new personalized extended (α, k)-anonymity model by the following two steps: (1) Thernsensitive attribute values are divided into several groups according to their sensitivities, and each group isrnassigned with its own frequency constraint threshold. (2) A guarding node is set for each individual to replacernhis/her sensitive value if necessary.We implement the personalized extended (α, k)-anonymity model with arnclustering algorithm. The performance evaluation finally shows that our model can provide stronger privacyrnpreservation efficiently as well as achieving the personalized service. Copyright © 2016 JohnWiley & Sons,rnLtd.
机译:通用(α,k)-匿名模型是保护隐私的数据发布中广泛使用的方法,但不能提供个性化匿名。目前,个性化匿名的两种主要方案是面向个人的匿名和敏感的面向价值的匿名。不幸的是,为上述用于隐私保护数据发布的方案中的任何一种而设计的现有的个性化匿名模型都不足以满足个性化隐私保护要求。在本文中,我们提出了一种新颖的个性化扩展方案,以一般(α,k)-匿名模型提供个性化服务。通过以下两个步骤,在新的个性化扩展(α,k)-匿名模型中将敏感的面向价值的匿名性与面向个人的匿名性结合起来:(1)根据敏感度将敏感属性值分为几组,每组组以自己的频率限制阈值分配。 (2)为每个人设置一个保护节点以替换他/她的敏感值。我们使用arnclustering算法实现个性化的扩展(α,k)-匿名模型。最终的性能评估表明,我们的模型可以有效地提供更强大的隐私保护,并实现个性化服务。版权所有©2016 JohnWiley&Sons,rnLtd。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号