首页> 外文期刊>Concurrency, practice and experience >Deadline‐constrained coevolutionary genetic algorithm forrnscientific workflow scheduling in cloud computing
【24h】

Deadline‐constrained coevolutionary genetic algorithm forrnscientific workflow scheduling in cloud computing

机译:截止时间约束的协同进化遗传算法用于云计算中科学的工作流调度

获取原文
获取原文并翻译 | 示例

摘要

The cloud infrastructures provide a suitable environment for the execution of large‐scale scientificrnworkflow application. However, it raises new challenges to efficiently allocate resources for thernworkflow application and also to meet the user's quality of service requirements. In this paper,rnwe propose an adaptive penalty function for the strict constraints compared with other geneticrnalgorithms. Moreover, the coevolution approach is used to adjust the crossover and mutationrnprobability, which is able to accelerate the convergence and prevent the prematurity. Wernalso compare our algorithm with baselines such as Random, particle swarm optimization,rnHeterogeneous Earliest Finish Time, and genetic algorithm in a WorkflowSim simulator on 4rnrepresentative scientific workflows. The results show that it performs better than the otherrnstate‐of‐the‐art algorithms in the criterion of both the deadline‐constraint meeting probabilityrnand the total execution cost.
机译:云基础架构为大型科学工作流应用程序的执行提供了合适的环境。但是,这给有效地分配工作流程应用程序资源以及满足用户的服务质量要求提出了新的挑战。与其他遗传算法相比,本文针对严格约束条件提出了一种自适应惩罚函数。此外,协同进化方法用于调整交叉和变异概率,从而能够加快收敛速度​​并防止过早发生。 Wern还在4个具有代表性的科学工作流程上的WorkflowSim模拟器中将我们的算法与基准进行了比较,例如随机,粒子群优化,均质最早完成时间和遗传算法。结果表明,在时限约束满足概率和总执行成本方面,它的性能均优于其他最新算法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号