首页> 外文期刊>Concurrency, practice and experience >Collaborating CPU and GPU for the electromagnetic simulations with the FDTD algorithm
【24h】

Collaborating CPU and GPU for the electromagnetic simulations with the FDTD algorithm

机译:通过FDTD算法将CPU和GPU协作进行电磁仿真

获取原文
获取原文并翻译 | 示例

摘要

The co-processors with the capability of powerful floating-point operations have been used to study thernelectromagnetic (EM) simulations with the finite-difference time-domain (FDTD) method, which usuallyrnconsumes huge computational resources. This work studied the implementation and optimization of thernthree-dimensional FDTD algorithm with the uniaxial perfectly matched layer boundary conditions on GPUrnclusters. In this study, CPUs and GPUs collaborate to solve the different parts of the computation domainrnconcurrently, and a set of techniques are used to optimize the execution efficiency of GPUs, such as the usernof GPU texture memory, the pinned host memory, and the asynchronization of data transfer between CPUrnand GPU. For the CPU-GPU collaborative mode, the problem size solved is not limited by the size of globalrnmemory on GPU because the computational capability of CPU is also used for the calculation of EM field.rnTo keep the load balance between CPU and GPU, 85% of the computation load is assigned to GPU forrnNVIDIA Tesla K40m, and the collaborative efficiency is found to be less than 75%.
机译:具有强大浮点运算能力的协处理器已被用于通过有限差分时域(FDTD)方法研究电磁(EM)仿真,这通常会消耗大量计算资源。这项工作研究了在GPUrnclusters上具有单轴完美匹配层边界条件的三维FDTD算法的实现和优化。在这项研究中,CPU和GPU协同协作来解决计算域的不同部分,并且使用了一组技术来优化GPU的执行效率,例如GPU纹理内存的用户,固定主机内存以及内存的异步化。 CPUrn和GPU之间的数据传输。对于CPU-GPU协作模式,解决的问题大小不受GPU上全局内存大小的限制,因为CPU的计算能力也用于EM字段的计算.rn为了保持CPU和GPU之间的负载平衡,需要85%的计算负荷中有10%被分配给了GPU GPU for NVIDIA Tesla K40m,而协作效率却低于75%。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号