首页> 外文期刊>Concurrency and computation: practice and experience >Spotting review spammer groups: A cosine pattern and network basedmethod
【24h】

Spotting review spammer groups: A cosine pattern and network basedmethod

机译:发现评论垃圾邮件发送者群组:余弦模式和基于网络的方法

获取原文
获取原文并翻译 | 示例

摘要

Nowadays, online product reviews strongly influence the purchase decision of consumers inrne-commerce platforms. Driven by the immense financial profits, review spammers deliberatelyrnpost fake reviews to promote or demote their target products. Some spammers are even organizedrnas groups to work together and try to take total control of the sentiment on their targetrnproducts. To detect such spammer groups, most previous works exploit frequent itemset miningrn(FIM) to find spammer group candidates and then use unsupervised spamicity ranking methodsrnto identify real spammer groups. However, these methods usually suffer from the problem ofrnthreshold setting, ie, high support value finding fewer groups while low support value leadingrnto more coincidentally generated groups and computational inefficiency. Moreover, the unsupervisedrnmethods are not able to make good use of labeled instances which are actually obtainablernin practice. In this paper, we propose CONSGD, a cosine pattern and heterogeneous informationrnnetwork–based spammer group detecting method. Specifically, the CONSGD uses cosine patternrnmining (CPM) to discover tight spammer group candidates with a respective low supportrnvalue, where the cosine threshold is utilized to avoid coincidentally generated groups. Moreover,rnCONSGD employs heterogeneous information network classification to identify the real spammerrngroups, which could utilize the labeled instances and do not rely to the assumption of independentrninstances. Experiments on real-life dataset show that our proposedCONSGDis effectivernand outperforms the state-of-the-art spammer group detection methods.
机译:如今,在线产品评论强烈影响着消费者在电子商务平台上的购买决策。在巨大的财务利润的驱动下,垃圾评论发送者故意发布虚假评论,以促销或降级其目标产品。一些垃圾邮件发送者甚至是有组织的团体,他们一起工作,并试图完全控制其目标产品的情绪。为了检测此类垃圾邮件发送者组,大多数以前的工作都利用频繁项集挖掘(FIM)查找垃圾邮件发送者组候选对象,然后使用无监督的垃圾邮件排名方法来识别真正的垃圾邮件发送者组。然而,这些方法通常存在阈值设置的问题,即高支持值发现较少的组,而低支持值导致更多同时发生的组和计算效率低下。而且,无监督方法不能充分利用实际上可以在实践中获得的标记实例。在本文中,我们提出了基于余弦模式和基于异构信息网络的垃圾邮件发送者组检测方法CONSGD。具体而言,CONSGD使用余弦模式挖掘(CPM)来发现具有各自较低Supportrn值的紧密垃圾邮件发送者组候选对象,其中使用余弦阈值来避免同时生成组。而且,rnCONSGD利用异构信息网络分类来识别真实的垃圾邮件发送者组,该垃圾邮件发送者组可以利用标记的实例,而不必依赖于独立实例的假设。在真实数据集上的实验表明,我们提出的CONSGDis有效且优于最新的垃圾邮件发送者组检测方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号