首页> 外文期刊>Concurrency and computation: practice and experience >Query grouping–based multi-query optimization frameworkrnfor interactive SQL query engines on Hadoop
【24h】

Query grouping–based multi-query optimization frameworkrnfor interactive SQL query engines on Hadoop

机译:基于查询分组的多查询优化框架,用于Hadoop上的交互式SQL查询引擎

获取原文
获取原文并翻译 | 示例

摘要

In the past few years, executing high-concurrency queries with interactive SQL query engines onrnHadoop has become an important activity formany organizations.However, these systems do notrnadoptMulti-QueryOptimization (MQO) to accelerate the process. There are twomajor concerns.rnFirstly, traditional MQO researches assume that multiple queries have high similarity. However,rnthese systems usually serve a variety of applications.Although queries from the same applicationrnhave high similarity, queries from different applications may have low similarity, so using traditionalrnMQO will be inefficient and time consuming. Secondly, integrating MQO may lead to lotsrnof system modifications. To integrate MQO into interactive SQL query engines on Hadoop efficiently,rna query grouping–basedMQOframeworkis proposed.Alightweight mechanism is used tornrepresent SQLqueries, on which a grouping method is exploited to speed up the optimization process.rnA cost model is integrated to estimate the execution cost of interactive SQL query enginesrnon Hadoop.By using the proposed framework,wemodify Impala system to supportMQO, and thernexperimental results on TPC-DS show significant performance improvements.
机译:在过去的几年中,在Hadoop上使用交互式SQL查询引擎执行高并发查询已成为任何组织的一项重要活动。但是,这些系统并未采用Multi-QueryOptimization(MQO)来加速这一过程。有两个主要问题。首先,传统的MQO研究假设多个查询具有高度相似性。但是,这些系统通常可以服务于各种应用程序。尽管来自同一应用程序的查询具有很高的相似性,但是来自不同应用程序的查询可能具有较低的相似性,因此使用传统的MQO将效率低下且耗时。其次,集成MQO可能会导致Lotsrnof系统修改。为了将MQO有效地集成到Hadoop上的交互式SQL查询引擎中,提出了基于rna查询分组的MQOframework。使用轻量级机制来表示SQL查询,在该查询上利用分组方法来加快优化过程。rn集成了成本模型来估计执行成本通过使用所提出的框架,我们对Impala系统进行了修改以支持MQO,并且在TPC-DS上的实验结果显示了显着的性能改进。

著录项

  • 来源
    《Concurrency and computation: practice and experience》 |2018年第19期|e4676.1-e4676.16|共16页
  • 作者单位

    College of Computer Science and Technology,Zhejiang University, Hangzhou 310027, China,Alibaba-Zhejiang University Joint Institute ofFrontier Technologies, Hangzhou 310027,China;

    College of Computer Science and Technology,Zhejiang University, Hangzhou 310027, China;

    Zhejiang Hongcheng Computer Systems Co,Ltd, Hangzhou 310053, China;

    College of Computer Science and Technology,Zhejiang University, Hangzhou 310027, China;

    College of Computer Science and Technology,Zhejiang University, Hangzhou 310027, China;

    Zhejiang Hongcheng Computer Systems Co,Ltd, Hangzhou 310053, China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    grouping method; Impala system; multi-query optimization;

    机译:分组方法;Impala系统;多查询优化;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号