首页> 外文期刊>Concurrency and computation: practice and experience >Distributed geometric nonnegativematrix factorization and hierarchical alternating least squares–based nonnegative tensor factorization with theMapReduce paradigm
【24h】

Distributed geometric nonnegativematrix factorization and hierarchical alternating least squares–based nonnegative tensor factorization with theMapReduce paradigm

机译:使用MapReduce范式进行分布式几何非负矩阵分解和基于分层交替最小二乘法的非负张量分解

获取原文
获取原文并翻译 | 示例

摘要

Nonnegativematrix factorization and its multilinear extension known as nonnegative tensor factorization are commonly used methods in machine learning and data analysis for feature extraction and dimensionality reduction for nonnegative high-dimensional data. Dimensionality reduction for massive amountsofdatausually involves distributed computation acrossmulti-node computer architectures. In this study, we propose various computational strategies for parallel and distributed computation of the latent factors in both factorizationmodels, all of which are based on partitioning the computational tasks according to the MapReduce paradigm. We extend the previously reported distributed hierarchical alternating least squares algorithm to the multi-way array factorizationmodel,where we assume that the observedmulti-way data can be partitioned into chunks along one mode. Moreover, we propose a new geometry-based distributed computational strategy for solving nonnegative matrix factorization problems. Numerical experiments performed using various large-scale data sets demonstrated that these algorithms are efficient and robust to noisy data.
机译:非负矩阵因式分解及其多线性扩展称为非负张量因式分解,是机器学习和数据分析中用于非负高维数据特征提取和降维的常用方法。大量数据的降维通常涉及跨多节点计算机体系结构的分布式计算。在这项研究中,我们提出了两种分解模型中潜在因子的并行和分布式计算的各种计算策略,所有这些都是基于根据MapReduce范式划分计算任务的。我们将先前报告的分布式分层交替最小二乘算法扩展到多路数组分解模型,其中我们假设观察到的多路数据可以沿一种模式划分为大块。此外,我们提出了一种新的基于几何的分布式计算策略,用于解决非负矩阵分解问题。使用各种大规模数据集进行的数值实验表明,这些算法对嘈杂的数据有效且健壮。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号