首页> 外文期刊>Concurrency, practice and experience >A PSO-based task scheduling algorithm improved using a loadbalancing technique for the cloud computing environment
【24h】

A PSO-based task scheduling algorithm improved using a loadbalancing technique for the cloud computing environment

机译:基于PSO的任务调度算法,使用云计算环境的负载平衡技术进行了改进

获取原文
获取原文并翻译 | 示例

摘要

Dynamic on-demand resource provisioning is one of the primary goals of the cloud computing task scheduling process. Task scheduling is a nondeterministic polynomial time (NP)-hard problem and is responsible for assigning tasks to virtual machines (VMs) in a way that increases the resource utilization and performance, reduces response time, and keeps the whole system balanced. In this paper, we present a static task scheduling method based on the particle swarm optimization (PSO) algorithm where the tasks are assumed to be non-preemptive and independent. We have improved the performance of the basic PSO method using a load-balancing technique. We have compared our proposed method with round robin (RR) task scheduling, improved PSO task scheduling and a load-balancing technique. The simulation results show that our method outperforms these algorithms by an increase of resource utilization of 22% and a decrease of makespan by 33%, compared with the basic PSO algorithm. The results illustrate that our proposed method converges to the near optimal solution faster than the basic PSO algorithm and is more efficacious with more tasks.
机译:动态按需资源供应是云计算任务调度过程的主要目标之一。任务调度是一个不确定的多项式时间(NP)难题,它负责以增加资源利用率和性能,减少响应时间并保持整个系统平衡的方式将任务分配给虚拟机(VM)。在本文中,我们提出了一种基于粒子群优化(PSO)算法的静态任务调度方法,其中假定任务是非抢先且独立的。我们使用负载平衡技术提高了基本PSO方法的性能。我们将我们提出的方法与轮询(RR)任务调度,改进的PSO任务调度和负载平衡技术进行了比较。仿真结果表明,与基本的PSO算法相比,我们的方法在资源利用率方面提高了22%,而有效期减少了33%,优于这些算法。结果表明,我们提出的方法比基本的PSO算法收敛到接近最优解的速度快,并且在执行更多任务时更有效。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号