首页> 外文期刊>Computing >Algebraic flux correction for nonconforming finite element discretizations of scalar transport problems
【24h】

Algebraic flux correction for nonconforming finite element discretizations of scalar transport problems

机译:标量输运问题的非协调有限元离散化的代数通量校正

获取原文
获取原文并翻译 | 示例

摘要

This paper is concerned with the extension of the algebraic flux-correction (AFC) approach (Kuzmin in Computational fluid and solid mechanics, Elsevier, Amsterdam, pp 887–888, 2001; J Comput Phys 219:513–531, 2006; Comput Appl Math 218:79–87, 2008; J Comput Phys 228:2517–2534, 2009; Flux-corrected transport: principles, algorithms, and applications, 2nd edn. Springer, Berlin, pp 145–192, 2012; J Comput Appl Math 236:2317–2337, 2012; Kuzmin et al. in Comput Methods Appl Mech Eng 193:4915–4946, 2004; Int J Numer Methods Fluids 42:265–295, 2003; Kuzmin and Möller in Flux-corrected transport: principles, algorithms, and applications. Springer, Berlin, 2005; Kuzmin and Turek in J Comput Phys 175:525–558, 2002; J Comput Phys 198:131–158, 2004) to nonconforming finite element methods for the linear transport equation. Accurate nonoscillatory approximations to convection-dominated flows are obtained by stabilizing the continuous Galerkin method by solution-dependent artificial diffusion. Its magnitude is controlled by a flux limiter. This concept dates back to flux-corrected transport schemes. The unique feature of AFC is that all information is extracted from the system matrices which are manipulated to satisfy certain mathematical constraints. AFC schemes have been devised with conforming (P_1) and (Q_1) finite elements in mind but this is not a prerequisite. Here, we consider their extension to the nonconforming Crouzeix–Raviart element (Crouzeix and Raviart in RAIRO R3 7:33–76, 1973) on triangular meshes and its quadrilateral counterpart, the class of rotated bilinear Rannacher–Turek elements (Rannacher and Turek in Numer Methods PDEs 8:97–111, 1992). The underlying design principles of AFC schemes are shown to hold for (some variant of) both elements. However, numerical tests for a purely convective flow and a convection–diffusion problem demonstrate that flux-corrected solutions are overdiffusive for the Crouzeix–Raviart element. Good resolution of smooth and discontinuous profiles is attested to (Q_1^mathrm{nc}) approximations on quadrilateral meshes. A synthetic benchmark is used to quantify the artificial diffusion present in conforming and nonconforming high-resolution schemes of AFC-type. Finally, the implementation of efficient sparse matrix–vector multiplications is addressed.
机译:本文关注代数通量校正(AFC)方法的扩展(计算流体和固体力学中的Kuzmin,Elsevier,阿姆斯特丹,第887-888页,2001; J Comput Phys 219:513-531,2006; Comput Appl Math 218:79–87,2008; J Comput Phys 228:2517–2534,2009;通量校正的传输:原理,算法和应用,第二版,Springer,柏林,第145–192页,2012; J Comput应用数学236:2317–2337,2012; Kuzmin等人在Comput Methods Appl Mech Eng 193:4915–4946,2004; Int J Numer Methods Fluids 42:265–295,2003; Kuzmin和Möller在磁通校正运输中:原理,算法和应用。Springer,柏林,2005年; Kuzmin和Turek在J Comput Phys 175:525-558,2002; J Comput Phys 198:131-158,2004)中提出了线性输运方程的非协调有限元方法。通过依赖于溶液的人工扩散来稳定连续Galerkin方法,可以获得对流主导流的精确非振荡近似。其大小由通量限制器控制。这个概念可以追溯到经过磁通校正的传输方案。 AFC的独特之处在于,所有信息都是从系统矩阵中提取的,这些矩阵经过处理以满足一定的数学约束。在设计AFC方案时要考虑到符合(P_1)和(Q_1)有限元素,但这不是前提条件。在这里,我们考虑将它们扩展到三角形网格上的不合格Crouzeix–Raviart元素(RAIRO R3 7:33–76,1973中的Crouzeix和Raviart)及其四边形对等体,即旋转双线性Rannacher-Turek元素(Rannacher和Turek在Numer Methods PDEs 8:97-111,1992)。事实证明,AFC方案的基本设计原理适用于这两个要素(它们的某些变体)。但是,对纯对流和对流扩散问题的数值测试表明,对于Crouzeix-Raviart元素,通量校正后的解具有过度扩散性。证明四边形网格上的(Q_1 ^ mathrm {nc})近似值可实现平滑且不连续轮廓的良好分辨率。合成基准用于量化AFC型合格和不合格高分辨率方案中存在的人工扩散。最后,解决了有效的稀疏矩阵-矢量乘法的实现。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号