首页> 外文期刊>Computing >LSTM based link quality confidence interval boundary prediction for wireless communication in smart grid
【24h】

LSTM based link quality confidence interval boundary prediction for wireless communication in smart grid

机译:基于LSTM基于链路质量置信区间智能网格无线通信的基于链路质量置信区间边界预测

获取原文
获取原文并翻译 | 示例

摘要

The smart grid will play an important role in the future city to support the diversified energy supply. Wireless communication, the most cost-effective alternative to the traditional wire-lines, promises to provide ubiquitous bi-direction information channel for smart grid devices. However, due to the complex environment that smart grid devices located in, the wireless link is easily been interfered with and therefore appears strong stochastic features. Considering different smart grid application traffics have different and strict reliability requirements, the confidence interval lower boundary is more suitable to represent the worst-case reliability of the stochastic wireless link quality and trustworthy for judging whether the link quality is qualified for the next transmission. In this paper, we propose a Long-Short-Term-Memory (LSTM) based link quality confidence interval lower boundary prediction for the smart grid. According to the analysis of the characteristics of the wireless link, we employ the wavelet denoising algorithm to decompose the signal-to-noise ratio time series into the deterministic part and the stochastic part for training two LSTM neural networks. Then, the deterministic part and the variance of the stochastic part are predicted respectively. Lastly the confidence interval boundary is calculated. To verify the performance of the proposed LQP method, real-world experiments are carried out and the results show that our method is more accurate and trustworthy in comparison with other link quality prediction methods.
机译:智能电网将在未来的城市发挥重要作用,以支持多元化的能源供应。无线通信,传统线线最具成本效益的替代方案,承诺为智能电网设备提供无处不在的双向信息通道。然而,由于位于智能电网设备的复杂环境,无线链路很容易受到干扰,因此看起来很强的随机特征。考虑到不同的智能电网应用程序,具有不同和严格的可靠性要求,置信区间下限更适合于代表随机无线链路质量和值得信赖的最坏情况可靠性,以判断链路质量是否合格用于下一个传输。在本文中,我们提出了一种基于短期内存(LSTM)的基于基于的链路质量置信区间下限预测智能电网。根据无线链路特性的分析,我们采用小波去噪算法将信噪比时间序列分解为确定性部件和随机部件,用于训练两个LSTM神经网络。然后,分别预测确定性部分和随机部件的方差。最后,计算置信区间边界。为了验证所提出的LQP方法的性能,进行了现实世界的实验,结果表明,与其他链路质量预测方法相比,我们的方法更准确且值得信赖。

著录项

  • 来源
    《Computing》 |2021年第2期|251-269|共19页
  • 作者单位

    Hefei Univ Technol Sch Elect Engn & Automat Hefei 230009 Peoples R China;

    Hefei Univ Technol Sch Elect Engn & Automat Hefei 230009 Peoples R China;

    Shizuoka Univ Dept Math & Syst Engn Shizuoka Japan;

    Hefei Univ Technol Sch Elect Engn & Automat Hefei 230009 Peoples R China;

    Hefei Univ Technol Sch Elect Engn & Automat Hefei 230009 Peoples R China;

    Hefei Univ Technol Sch Elect Engn & Automat Hefei 230009 Peoples R China;

    Sun Yat Sen Univ Sch Intelligent Syst Engn Guangzhou Peoples R China;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Link quality prediction; Confidence interval; LSTM; Wireless communication reliability; Smart grid;

    机译:链路质量预测;置信区间;LSTM;无线通信可靠性;智能电网;
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号