首页> 外文期刊>Computing >Weighted Error Estimates for Finite Element Solutions of Variational Inequalities
【24h】

Weighted Error Estimates for Finite Element Solutions of Variational Inequalities

机译:变分不等式有限元解的加权误差估计

获取原文
获取原文并翻译 | 示例

摘要

In this note the studies begun in Blum and Suttmeier (l999) on adaptive finite element discretisations for nonlinear problems described by variational inequalities are continued. Similar to the concept proposed, e.g.. in Becker and Rannacher (1996) for variational equalities, weighted a posteriori esti- mates for controlling arbitrary functionals of the discretisation error are constructed by using a duality argument. Numcrical results for the obstacle problem demonstrate the derived error bounds to be reliable and, used for an adaptive grid refinement strategy, to producc economical meshes.
机译:在这个注释中,关于由变分不等式描述的非线性问题的自适应有限元离散化的研究在Blum和Suttmeier(1999)中开始。类似于在Becker和Rannacher(1996)中提出的关于变分相等性的概念,通过使用对偶性参数构造了加权后验估计,以控制离散误差的任意函数。障碍问题的数值结果表明导出的误差范围是可靠的,并且用于自适应网格细化策略以生产经济的网格。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号