首页> 外文期刊>Computing >Descent Iterations for Improving Approximate Eigenpairs of Polynomial Eigenvalue Problems with General Complex Matrices
【24h】

Descent Iterations for Improving Approximate Eigenpairs of Polynomial Eigenvalue Problems with General Complex Matrices

机译:用通用复数矩阵改进多项式特征值问题的近似特征对的下降迭代

获取原文
获取原文并翻译 | 示例

摘要

In this paper, we consider descent iterations with line search for improving an approximate eigenvalue and a corresponding approximate eigenvector of polynomial eigenvalue problems with general com- plex matrices, where an approximate eigenpair was obtained by some method. The polynomial eigenvalue problem is written as a system of complex nonlinear equations with nondifferentiable normalized condition. Convergence theorems for iterations are established. Finally, some numerical examples are presented to demonstrate the effectiveness of the iterative methods.
机译:在本文中,我们考虑通过线搜索进行下降迭代,以改善近似特征值和具有一般复杂矩阵的多项式特征值问题的相应近似特征向量,其中通过某种方法获得了近似特征对。多项式特征值问题写为具有不可微归一化条件的复杂非线性方程组。建立了迭代收敛定理。最后,通过一些数值例子说明了迭代方法的有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号