首页> 外文期刊>Computing >A parallel online trajectory compression approach for supporting big data workflow
【24h】

A parallel online trajectory compression approach for supporting big data workflow

机译:支持大数据工作流程的并行在线轨迹压缩方法

获取原文
获取原文并翻译 | 示例

摘要

AbstractNowadays with booming of sensor technology, location big data exhibit as high complexity, massive volume, real-time and stream-based characteristic. The current workflow systems are facing the challenge hardly to efficiently process the real-time location big data like trajectory stream. Online compression method is an available solution to preprocess these trajectory data in order to speed up the processing of big data workflow. However, the current online compression methods are in a serial execution that are hard to fast compress massive real-time original trajectory data. Aiming at this problem, we employ the multi-core and many-core approaches to accelerate a representative online trajectory compression method SQUISH-E. First a parallel version of SQUISH-E is proposed. PSQUISH-E used a data parallel scheme based on overlap technique and OpenMP to achieve the implementation over multiple-core CPUs. For further reducing compression time, we combine iteration method and GPU Hyper-Q feature to develop GPU-aided PSQUISH-E algorithm called as G-PSQUISH-E. The experimental results showed that (1) the data parallel scheme based on overlap can reach a similar SED error as the SQUISH-E (2) the proposed PSQUISH-E running on multi-core CPU achieved 3.8 times acceleration effect, and (3) G-PSQUISH-E further accelerated the effect of about 3 times compared with PSQUISH-E.
机译: Abstract 如今,随着传感器技术的蓬勃发展,位置大数据呈现出高复杂性,海量音量,实时和基于流的特征。当前的工作流系统正面临着难以有效处理像轨迹流这样的实时定位大数据的挑战。在线压缩方法是预处理这些轨迹数据以加快大数据工作流程处理的一种可用解决方案。但是,当前的在线压缩方法是串行执行的,难以快速压缩大量实时原始轨迹数据。针对此问题,我们采用多核和多核方法来加速具有代表性的在线轨迹压缩方法SQUISH-E。首先,提出了SQUISH-E的并行版本。 PSQUISH-E使用基于重叠技术和OpenMP的数据并行方案来实现在多核CPU上的实现。为了进一步减少压缩时间,我们结合了迭代方法和GPU Hyper-Q功能来开发称为G-PSQUISH-E的GPU辅助PSQUISH-E算法。实验结果表明:(1)基于重叠的数据并行方案可以达到与SQUISH-E相似的SED错误;(2)在多核CPU上运行的拟议PSQUISH-E达到了3.8倍的加速效果;(3)与PSQUISH-E相比,G-PSQUISH-E的作用进一步增强了约3倍。

著录项

  • 来源
    《Computing》 |2018年第1期|3-20|共18页
  • 作者单位

    School of Computer Science, China University of Geosciences (Wuhan),Hubei Key Laboratory of Intelligent Geo-Information Processing, China University of Geosciences;

    School of Computer Science, China University of Geosciences (Wuhan),Hubei Key Laboratory of Intelligent Geo-Information Processing, China University of Geosciences;

    School of Computer Science, China University of Geosciences (Wuhan),Hubei Key Laboratory of Intelligent Geo-Information Processing, China University of Geosciences;

    School of Computer Science, China University of Geosciences (Wuhan),Hubei Key Laboratory of Intelligent Geo-Information Processing, China University of Geosciences;

    School of Computer Science, China University of Geosciences (Wuhan),Hubei Key Laboratory of Intelligent Geo-Information Processing, China University of Geosciences;

    Newcastle University;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Big data; Online trajectory compression algorithm; Workflow; Parallel; GPU;

    机译:大数据;在线轨迹压缩算法;工作流;并行;GPU;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号