首页> 外文期刊>Computing and visualization in science >Support Vector Classification Of Proteomic Profile Spectra Based On Feature Extraction With The Bi-orthogonal Discrete Wavelet Transform
【24h】

Support Vector Classification Of Proteomic Profile Spectra Based On Feature Extraction With The Bi-orthogonal Discrete Wavelet Transform

机译:基于特征提取的正交正交离散小波变换的蛋白质组谱谱支持向量分类

获取原文
获取原文并翻译 | 示例

摘要

Automatic classification of high-resolution mass spectrometry data has increasing potential to support physi-cians in diagnosis of diseases like cancer. The proteomic data exhibit variations among different disease states. A precise and reliable classification of mass spectra is essential for a successful diagnosis and treatment. The underlying process to obtain such reliable classification results is a crucial point. In this paper such a method is explained and a corresponding semi automatic parameterization procedure is derived. Thereby a simple straightforward classification procedure to assign mass spectra to a particular disease state is derived. The method is based on an initial preprocessing stage of the whole set of spectra followed by the bi-orthogonal discrete wavelet transform (DWT) for feature extraction. The approximation coefficients calculated from the scaling function exhibit a high peak pattern matching property and feature a denoising of the spectrum. The discriminating coefficients,rnselected by the Kolmogorov-Smirnov test are finally used as features for training and testing a support vector machine with both a linear and a radial basis kernel. For comparison the peak areas obtained with the ClinProt-System~1 [33] were analyzed using the same support vector machines. The introduced approach was evaluated on clinical MALDI-MS data sets with two classes each originating from cancer studies. The cross validated error rates using the wavelet coefficients where better than those obtained from the peak areas.2
机译:高分辨率质谱数据的自动分类在支持医师诊断癌症等疾病方面具有越来越大的潜力。蛋白质组学数据显示出不同疾病状态之间的差异。质谱图的精确可靠分类对于成功进行诊断和治疗至关重要。获得此类可靠分类结果的基本过程至关重要。本文对这种方法进行了说明,并推导了相应的半自动参数化过程。由此,得出将质谱分配给特定疾病状态的简单直接分类程序。该方法基于整个光谱集的初始预处理阶段,然后是用于特征提取的双正交离散小波变换(DWT)。由缩放函数计算出的近似系数具有高峰模式匹配特性,并且具有频谱降噪的特征。由Kolmogorov-Smirnov检验选择的判别系数最终用作训练和测试具有线性和径向基核的支持向量机的功能。为了比较,使用相同的支持向量机分析了使用ClinProt-System〜1 [33]获得的峰面积。在临床MALDI-MS数据集上对引入的方法进行了评估,每种数据集来自癌症研究,分为两类。使用小波系数进行交叉验证的误差率比从峰面积获得的误差率要好2。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号