首页> 外文期刊>Computing and Visualization in Science >Solving an elliptic PDE eigenvalue problem via automated multi-level substructuring and hierarchical matrices
【24h】

Solving an elliptic PDE eigenvalue problem via automated multi-level substructuring and hierarchical matrices

机译:通过自动多级子结构和层次矩阵解决椭圆PDE特征值问题

获取原文
获取原文并翻译 | 示例

摘要

We propose a new method for the solution of discretised elliptic PDE eigenvalue problems. The new method combines ideas of domain decomposition, as in the automated multi-level substructuring (short AMLS), with the concept of hierarchical matrices (short (fancyscript{H})-matrices) in order to obtain a solver that scales almost optimal in the size of the discrete space. Whereas the AMLS method is very effective for PDEs posed in two dimensions, it is getting very expensive in the three-dimensional case, due to the fact that the interface coupling in the domain decomposition requires dense matrix operations. We resolve this problem by use of data-sparse hierarchical matrices. In addition to the discretisation error our new approach involves a projection error due to AMLS and an arithmetic error due to (fancyscript{H})-matrix approximation. A suitable choice of parameters to balance these errors is investigated in examples.
机译:我们提出了一种求解离散椭圆PDE特征值问题的新方法。这种新方法结合了自动多级子结构(short AMLS)中的领域分解思想和层次矩阵(short(fancyscript {H})-matrices)的概念,从而获得了在以下条件下几乎最佳规模的求解器:离散空间的大小。尽管AMLS方法对于二维放置的PDE非常有效,但由于在域分解中的接口耦合需要密集的矩阵运算,因此在三维情况下它变得非常昂贵。我们通过使用数据稀疏层次矩阵来解决此问题。除了离散误差外,我们的新方法还包括由于AMLS引起的投影误差和由于(fancyscript {H})-矩阵近似引起的算术误差。在示例中研究了合适的参数选择来平衡这些误差。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号