首页> 外文期刊>Computing and Visualization in Science >Efficient arithmetic operations for rank-structured matrices based on hierarchical low-rank updates
【24h】

Efficient arithmetic operations for rank-structured matrices based on hierarchical low-rank updates

机译:基于分层低秩更新的秩结构矩阵的高效算术运算

获取原文
获取原文并翻译 | 示例

摘要

Many matrices appearing in numerical methods for partial differential equations and integral equations are rank-structured, i.e., they contain submatrices that can be approximated by matrices of low rank. A relatively general class of rank-structured matrices are ({mathcal {H}}^2)-matrices: they can reach the optimal order of complexity, but are still general enough for a large number of practical applications. We consider algorithms for performing algebraic operations with ({mathcal {H}}^2)-matrices, i.e., for approximating the matrix product, inverse or factorizations in almost linear complexity. The new approach is based on local low-rank updates that can be performed in linear complexity. These updates can be combined with a recursive procedure to approximate the product of two ({mathcal {H}}^2)-matrices, and these products can be used to approximate the matrix inverse and the LR or Cholesky factorization. Numerical experiments indicate that the new algorithm leads to preconditioners that require ({mathcal {O}}(n)) units of storage, can be evaluated in ({mathcal {O}}(n)) operations, and take ({mathcal {O}}(n log n)) operations to set up.
机译:用于偏微分方程和积分方程的数值方法中出现的许多矩阵都是秩结构的,即它们包含可由低阶矩阵近似的子矩阵。等级结构矩阵的相对通用类是({mathcal {H}} ^ 2)矩阵:它们可以达到复杂性的最佳顺序,但对于许多实际应用仍然足够通用。我们考虑使用({mathcal {H}} ^ 2)矩阵执行代数运算的算法,即近似矩阵乘积,几乎线性复杂度的逆或因式分解。新方法基于可以以线性复杂度执行的本地低秩更新。可以将这些更新与递归过程组合以近似计算两个({mathcal {H}} ^ 2)矩阵的乘积,并且可以使用这些乘积来近似矩阵逆和LR或Cholesky分解。数值实验表明,新算法导致预处理器需要({mathcal {O}}(n))个存储单元,可以在({mathcal {O}}(n))个运算中求值,然后取({mathcal { O}}(n log n))操作来设置。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号