首页> 外文期刊>Computing and informatics >UNSUPERVISED ADAPTATION FOR HIGH-DIMENSIONAL WITH LIMITED-SAMPLE DATA CLASSIFICATION USING VARIATIONAL AUTOENCODER
【24h】

UNSUPERVISED ADAPTATION FOR HIGH-DIMENSIONAL WITH LIMITED-SAMPLE DATA CLASSIFICATION USING VARIATIONAL AUTOENCODER

机译:使用变化性AutiaceCoder使用有限 - 样本数据分类无监督适应性的高维度

获取原文
获取原文并翻译 | 示例

摘要

High-dimensional with limited-sample size (HDLSS) datasets exhibit two critical problems: (1) Due to the insufficiently small-sample size, there is a lack of enough samples to build classification models. Classification models with a limited-sample may lead to overfitting and produce erroneous or meaningless results. (2) The 'curse of dimensionality' phenomena is often an obstacle to the use of many methods for solving the high-dimensional with limited-sample size problem and reduces classification accuracy. This study proposes an unsupervised framework for high-dimensional limited-sample size data classification using dimension reduction based on variational autoencoder (VAE). First, the deep learning method variational autoencoder is applied to project high-dimensional data onto lower-dimensional space. Then, clustering is applied to the obtained latent-space of VAE to find the data groups and classify input data. The method is validated by comparing the clustering results with actual labels using purity, rand index, and normalized mutual information. Moreover, to evaluate the proposed model strength, we analyzed 14 datasets from the Arizona State University Digital Repository. Also, an empirical comparison of dimensionality reduction techniques shown to conclude their applicability in the high-dimensional with limited-sample size data settings. Experimental results demonstrate that variational autoencoder can achieve more accuracy than traditional dimensionality reduction techniques in high-dimensional with limited-sample-size data analysis.
机译:具有限制样本大小(HDLS)数据集的高维层表现出两个关键问题:(1)由于小样本大小不足,缺乏足够的样品来构建分类模型。具有有限样本的分类模型可能导致过度拟合并产生错误或无意义的结果。 (2)“维度”现象的“诅咒”通常是利用许多方法来利用有限的样本尺寸问题来解决高维的障碍,并降低分类精度。本研究提出了一种利用基于变分AutiaceCoder(VAE)的尺寸降低的高维限制样本大小数据分类框架的无监督框架。首先,将深度学习方法变形AutoEncoder应用于将高维数据投影到低维空间。然后,将群集应用于所获得的VAE的潜在空间以查找数据组并对输入数据进行分类。通过使用纯度,rand索引和标准化的相互信息将聚类结果与实际标签进行比较,通过将群集结果进行验证。此外,为了评估拟议的模型实力,我们分析了亚利桑那州立大学数字存储库的14个数据集。此外,所示的维度降低技术的实证比较是以有限样本大小的数据设置在高维中结束其适用性。实验结果表明,变形的自身额位可以在具有限制样本尺寸数据分析的高维中的传统维度降低技术来实现比传统的维度降低技术更准确。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号