首页> 外文期刊>Computing and informatics >IMPROVED K-ANONYMIZE AND L-DIVERSE APPROACH FOR PRIVACY PRESERVING BIG DATA PUBLISHING USING MPSEC DATASET
【24h】

IMPROVED K-ANONYMIZE AND L-DIVERSE APPROACH FOR PRIVACY PRESERVING BIG DATA PUBLISHING USING MPSEC DATASET

机译:改进了k-anymonize和l-不同的方法,用于使用mpsec数据集保留大数据发布的隐私权

获取原文
获取原文并翻译 | 示例

摘要

Data exposure and privacy violations may happen when data is exchanged between organizations. Data anonymization gives promising results for limiting such dangers. In order to maintain privacy, different methods of k-anonymization and l-diversity have been widely used. But for larger datasets, the results are not very promising. The main problem with existing anonymization algorithms is high information loss and high running time. To overcome this problem, this paper proposes new models, namely Improved k-Anonymization (IKA) and Improved l-Diversity (ILD). IKA model takes large k-value using a symmetric as well as an asymmetric anonymizing algorithm. Then IKA is further categorized into Improved Symmetric k-Anonymization (ISKA) and Improved Asymmetric k-Anonymization (IAKA). After anonymizing data using IKA, ILD model is used to increase privacy. ILD will make the data more diverse and thereby increasing privacy. This paper presents the implementation of the proposed IKA and ILD model using real-time big candidate election dataset, which is acquired from the Madhya Pradesh State Election Commission, India (MPSEC) along with Apache Storm. This paper also compares the proposed model with existing algorithms, i.e. Fast clustering-based Anonymization for Data Streams (FADS), Fast Anonymization for Data Stream (FAST), Map Reduce Anonymization (MRA) and Scalable k-Anonymization (SKA). The experimental results show that the proposed models IKA and ILD have remarkable improvement of information loss and significantly enhanced the performance in terms of running time over the existing approaches along with maintaining the privacy-utility trade-off.
机译:在组织之间交换数据时,可能会发生数据曝光和隐私违规行为。数据匿名使具有限制这些危险的有希望的结果。为了保持隐私,已广泛使用不同的k-anymatmization和l-多样性方法。但对于较大的数据集,结果不是很有希望。现有匿名化算法的主要问题是高信息丢失和高运行时间。为了克服这个问题,本文提出了新的模型,即改善了K-anymonyization(IKA)和改进的L-多样性(ILD)。 IKA模型使用对称的k值以及非对称匿名算法需要大的k值。然后IKA进一步分类为改进的对称k-匿名化(ISKA)并改善了不对称k-anymalization(IAKA)。使用IKA匿名数据后,ILD模型用于增加隐私。 ILD将使数据更多样化,从而增加隐私。本文介绍了使用实时大候选选举数据集的拟议IKA和ILD模型,该数据集从Madhya Pradesh州选举委员会,印度(MPSEC)以及Apache Storm获得。本文还将所提出的模型与现有算法进行比较,即数据流(FAD)的快速聚类 - 基于群集的匿名化,数据流的快速匿名化(快速),映射减少匿名化(MRA)和可扩展的K-Anymalization(SKA)。实验结果表明,拟议的型号IKA和ILD具有显着提高信息损失,并在现有方法中显着提高了运行时间的性能,以及维持隐私式权衡。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号